RESUMEN
Molecular optical probes play pivotal roles in inâ vivo imaging of biomarkers associated to kidney diseases. Relying on structural tunability and high fluorescence quantum yields, versatile optical probes have been constructed on cyanine or hemicyanine-based scaffold in recent years. This review summaries the recent progress on the development of optical probes for imaging of kidney diseases, particularly through near-infrared fluorescence, chemiluminescence and photoacoustic imaging modalities. The chemical design and sensing mechanisms are discussed along with applications in the detection of renal cell carcinoma and acute kidney injury. This progress provides insights and directions for the development of next generation kidney-targeted probes and for pushing their further applications in preclinical and clinical research.
Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Enfermedades Renales , Imagen Óptica , Humanos , Carbocianinas/química , Carbocianinas/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Enfermedades Renales/diagnóstico por imagen , Animales , Estructura MolecularRESUMEN
Bio-inspired transistor synapses use solid electrolytes to achieve low-power operation and rich synaptic behaviors via ion diffusion and trapping. While these neuromorphic devices hold great promise, they still suffer from challenges such as high leakage currents and power consumption, electrolysis risk, and irreversible conductance changes due to long-range ion migrations and permanent ion trapping. In addition, their response to light is generally limited because of "exciton-polaron quenching", which restricts their potential in in-sensor neuromorphic visions. To address these issues, we propose replacing solid electrolytes with polyzwitterions, where the cation and anion are covalently concatenated via a flexible alkyl chain, thus preventing long-range ion migrations while inducing good photoresponses to the transistors via interfacial charge trapping. Our detailed studies reveal that polyzwitterion-based transistors exhibit optoelectronic synaptic behavior with ultralow-power consumption (~250 aJ per spike) and enable high-performance in-sensor reservoir computing, achieving 95.56% accuracy in perceiving the trajectory of moving basketballs.
RESUMEN
Conventional security inks, generally directly printed on the data page surface, are vulnerable to counterfeiters, thereby raising the risk of chemical structural deciphering. In fact, polymer film-based data pages with customized patterns embedded within polymer matrix, rather than printed on the surface, emerge as a promising solution. Therefore, the key lies in developing fluorophores offering light dose-controlled fluorescent color inside polymer matrices. Though conventional fluorophores often suffer from photobleaching and uncontrolled photoreactions, disqualifying them for this purpose. Herein a diphenanthridinylfumaronitrile-based phototransformers (trans-D5) that undergoes photoisomerization and subsequent photocyclization during photopolymerization of the precursor, successively producing cis- and cyclo-D5 with stepwise redshifted solid-state emissions is developed. The resulting cyclo-D5 exhibits up to 172 nm emission redshift in rigidifying polymer matrices, while trans-D5 experiences a slightly blueshifted emission (≈28 nm), cis-D5 undergoes a modest redshift (≈14 nm). The markedly different rigidochromic behaviors of three D5 molecules within polymer matrices enable multicolor photochemical printing with a broad hue ranging from 38 to 10 via an anticlockwise direction in Munsell color space, yielding indecipherable fluorescent patterns in polymer films. This work provides a new method for document protection and implements advanced security features that are unattainable with conventional inks.
RESUMEN
Drug-induced renal failure (DIRF) poses a serious medical complication with high mortality risk. However, early diagnosis or prognosis of DIRF remain challenging, as current methods rely on detecting late-stage biomarkers. Herein we present a library of zwitterionic unimolecular hemicyanines (ZCs) available for constructing activatable reporters to detect DIRF since its initial stage. Zwitterionic properties of these probes are achieved through interspersedly integrating alkyl sulfonates and quaternary ammonium cations onto hemicyanine skeleton, which result in record low plasma protein binding (<5 %) and remarkable renal clearance efficiencies (≈96 %). An activatable reporter ZCRR is further developed by masking the optimal candidate ZC6 with a tetrapeptide specifically cleavable by caspase-8, an initiating indicator of apoptosis. In living mice with cisplatin-induced DIRF, systematically administered ZCRR efficiently accumulates in kidneys and responds to elevated caspase-8 for near-infrared fluorescence signals 'turn-on', enabling sensitive detection of intrarenal apoptosis 60â h earlier than clinical methods, and precise evaluation of apoptosis remediation effects by different medications on DIRF mice. As it's urinary excretable, ZCRR also allows for remote detection of DIRF and predicting renoprotective efficacy through in vitro optical urinalysis. This study thus presents unimolecular renal clearable scaffolds that are applicable to developing versatile activatable reporters for renal diseases management.
Asunto(s)
Lesión Renal Aguda , Colorantes Fluorescentes , Ratones , Animales , Colorantes Fluorescentes/química , Caspasa 8/metabolismo , Pronóstico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico , Diagnóstico PrecozRESUMEN
Traditional security inks relying on fluorescent/phosphorescent molecules are facing increasing risks of forgery or tampering due to their simple readout scheme (i.e., UV-light irradiation) and the advancement of counterfeiting technologies. In this work, a multidimensional data-encryption method based on non-fluorescent polymers via a "lock-key" mechanism is developed. The non-fluorescent invisible polymer inks serve as the "lock" for data-encryption, while the anti-rigidochromic fluorophores that can distinctively light up the polymer inks with programed emissions are "keys" for decryption. The emission of decrypted data is prescribed by polymer chemical structure, molecular weight, topology, copolymer sequence, and phase structure, and shows distinct intensity, wavelength, and chirality compared with the intrinsic emission of fluorophores. Therefore, the data is triply encrypted and naturally gains a high-security level, e.g., only one out of 20 000 keys can access the only correct readout from 40 000 000 possible outputs in a three-polymers-based data-encryption matrix. Note that fluorophores lacking anti-rigidochrimism cannot selectively light up the inks and fail in data-decryption. Further, the diverse topologies, less well-defined structures, and random-coiled shapes of polymers make it impossible for them to be imitated. This work offers a new design for security inks and boosts data security levels beyond the reach of conventional fluorescent inks.
RESUMEN
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163â nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.