Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012498

RESUMEN

Polyhedral boranes have potential applications in medicine and material science due to their unique structure and stability. However, tedious and low-yield synthetic methods limited their application. Herein, we have developed a facile large-scale synthetic method for M2[B12H12] (M = Na, K) by the reaction of MBH4 with N,N-dipropylaniline borane in diglyme at 120 or 140 °C in up to 88% yield. The mechanistic studies indicated that intermediates, such as [B3H8]- and [B9H14]-, were formed in the formation process of [B12H12]2- anion, similar to previously reported. The formation of B2H6 from the N,N-dipropylaniline borane adducts is most important. The developed method avoided using toxic materials, with high yield, easily scaled up, raw materials are readily available. Additionally, the starting material, N,N-dipropylaniline, could be repeatedly used at least three times with similar yields, which is an economical way to facilitate industrial synthesis. It is believed that this method will support further application of Na2[B12H12] and K2[B12H12] as solid electrolytes for an all-solid-state batteries.

2.
Hortic Res ; 11(6): uhae104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883328

RESUMEN

Brassinazole resistant 1 (BZR1), a brassinosteroid (BR) signaling component, plays a pivotal role in regulating numerous specific developmental processes. Our study demonstrated that exogenous treatment with 2,4-epibrassinolide (EBR) significantly enhanced the accumulation of carotenoids and chlorophylls in Chinese kale (Brassica oleracea var. alboglabra). The underlying mechanism was deciphered through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays, whereby BoaBZR1.1 directly interacts with the promoters of BoaCRTISO and BoaPSY2, activating their expression. This effect was further validated through overexpression of BoaBZR1.1 in Chinese kale calli and plants, both of which exhibited increased carotenoid accumulation. Additionally, qPCR analysis unveiled upregulation of carotenoid and chlorophyll biosynthetic genes in the T1 generation of BoaBZR1.1-overexpressing plants. These findings underscored the significance of BoaBZR1.1-mediated BR signaling in regulating carotenoid accumulation in Chinese kale and suggested the potential for enhancing the nutritional quality of Chinese kale through genetic engineering of BoaBZR1.1.

3.
Biomed Microdevices ; 26(3): 30, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913209

RESUMEN

Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.


Asunto(s)
Metales Pesados , Metales Pesados/análisis , Agua/química , Electrónica , Contaminantes Químicos del Agua/análisis , Iones/química , Iones/análisis
4.
Front Neurosci ; 18: 1349059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560046

RESUMEN

Introduction: Acupuncture analgesia (AA) is widely used in clinical practice. The autonomic nervous system (ANS) may be an important pathway for acupuncture signal transduction. However, real-time changes in autonomic function during AA and the effect of "needle sensation" remain unclear. Methods: We established a human pain model in healthy adults and randomly assigned 128 participants to the model, sham acupuncture, and acupuncture groups in a 1:1:2 ratio. Heart rate variability (HRV), including total power (TP), low-frequency power (LF), high-frequency power (HF), ratio of LF to HF (LF/HF), standard deviation of the normal-normal intervals (SDNN), and root mean square of successive interval differences (RMSSD), were used to assess autonomic function. The visual analog scale (VAS) and efficiency were used to assess the analgesic effect of acupuncture. The Massachusetts General Hospital acupuncture sensation scale (MASS) was used to indicate the intensity of the needle sensation. Anxiety levels were also measured. Finally, the correlation of MASS with HRV, VAS, and anxiety levels was analyzed. Results: VAS decreased after 10 min of needling and 5 min after needle withdrawal in the acupuncture group compared with those in the model group (p = 0.038, p = 0.020). The efficacy rates were 82.0, 50.0, and 61.3% in the acupuncture, model, and sham groups, respectively. These represent significant differences between the acupuncture group and the model and sham acupuncture groups (p < 0.001 in each case). No differences were observed between the model and sham acupuncture groups. HF, TP, SDNN, and RMSSD were all increased in the acupuncture group compared with those in the model group (p = 0.045, p = 0.041, p = 0.002, p = 0.006, respectively). No differences were observed in the sham acupuncture group compared to the model group (p = 0.632, p = 0.542, p = 0.093, p = 0.222, respectively). The LF and LF/HF did not differ among all three groups. A positive correlation was observed between MASS and RMSSD2, LF2, RMSSD4, TP4, VAS5, and anxiety levels. Conclusion: AA was associated with enhanced vagal activity. The intensity of needle sensation was positively correlated with vagal and sympathetic nerve activities. Acupuncture is an effective means of regulating autonomic function, and needle sensation may be an important modulator.

5.
Chemosphere ; 349: 140847, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043614

RESUMEN

Nonradical species with great resistance to interference have shown great advantages in complex wastewater treatment. Herein, a novel system constructed by biodegradable tetrakis-(4-carboxyphenyl)-porphyrinatoiron(III) (FeIII-TCPP) and peroxymonosulfate (PMS) was proposed for facile decontamination. Nonradical pathway is observed in FeIII-TCPP/PMS, where 1O2 and high-valent iron-oxo species play dominant roles. The genres and valence of high-valent iron-oxo species, including iron(IV)-oxo porphyrin radical-cationic species [OFeIV-TCPP•+] and iron(IV)-hydroxide species [FeIV-TCPP(OH)], are ascertained, along with their generation mechanism. The axial ligand on the iron axial site affects the ground spin state of FeIII-TCPP, further influencing the thermodynamic reaction pathway of active species. With trace catalyst in micromoles, FeIII-TCPP exhibits high efficiency by degrading bisphenol S (BPS) completely within 5 min, while Co2+/PMS can only achieve a maximum of 26.2% under identical condition. Beneficial from nonradical pathways, FeIII-TCPP/PMS demonstrates a wide pH range of 3-10 and exhibits minimal sensitivity to interference of concomitant materials. BPS is primarily eliminated through ß-scission and hydroxylation. Specifically, 1O2 electrophilically attacks the C-S bond of BPS, while high-valent iron-oxo species interacts with BPS through an oxygen-bound mechanism. This study provides novel insights into efficient activation of PMS by iron porphyrin, enabling the removal of refractory pollutants through nonradical pathway.


Asunto(s)
Contaminantes Ambientales , Porfirinas , Compuestos Férricos/química , Peróxidos/química , Hierro , Oxígeno
6.
J Hazard Mater ; 463: 132957, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37948783

RESUMEN

The effects of co-exposure to aged submicron particles (aSMPs) and Cd as model contaminants on rice leaves via the foliar route were investigated. Thirty-day-old rice seedlings grown in soil were exposed to Cd (nitrate) through foliar spraying at concentrations of 1, 10, 50, 100, and 500 µM, with or without aSMP at a rate of 30 µg d-1. It was observed that Cd translocated from leaves to roots via stems even without co-exposure to SMP. Co-exposure can reduce cadmium levels in leaves. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis confirmed a significant reduction (29.3 - 77.9%) in Cadmium accumulation in the leaves of rice plants during co-exposure. Exposure to Cd resulted in physiological, transcriptomic, and metabolomic changes in rice leaves, disrupting 28 metabolism pathways, and impacting crop yield and quality. Exposure to both Cd and aSMPs can interfere with the Cd distribution in plants. Rice leaves exposed solely to Cd exhibit higher toxicity and Cd accumulation, compared to those co-exposed to Cd and aSMPs. The accumulation of Cd in plant leaves is enhanced with aSMPs, which may lead to more pronounced gene expression regulation and changes in metabolic pathways, compared to Cd exposure. Our study found that the independent Cd exposure group had higher Cd accumulation and toxicity in rice leaves compared to the combined exposure of Cd and aSMPs. We hypothesize that aged negatively charged SMPs can capture Cd and reduce its exposure in the free state while jointly inhibiting Cd-induced oxidative and chloroplast damage, thereby reducing the potential risk of Cd exposure in rice plants.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Oryza/metabolismo , Plásticos/análisis , Contaminantes del Suelo/metabolismo , Hojas de la Planta/metabolismo , Calidad de los Alimentos , Suelo
7.
Waste Manag ; 171: 676-685, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37866111

RESUMEN

Passive aeration has been proven to be efficient for oxygen supply in landfill. The combination of passive aeration and semi-aerobic landfill offers a cost-effective and energy-efficient approach to solid waste (SW) treatment. However, determining the optimal strategy for this combination has remained unclear. This study aimed to investigate the strategy of passive aeration in a semi-aerobic landfill using numerical simulation methods. A model coupled hydrodynamic model and compartment model for degradation of SW was implemented. The accuracy was well validated by comparing measured and simulated results in a pilot-scale landfill. Compared with natural convection, passive aeration by funnel caps could increase air input by 20 %. By simulating volumetric fraction distribution of CO2, CH4 and O2 in landfill, an orthogonal experiment including 4 factors was designed to identify that the diameter of tubes (DT), the spacing between tubes (ST) and the landfill depth (LD) have substantial impacts on aerobic zone ratio (AZR) of landfill. But the diameter of gas ports (DGP) has an indiscernible effect. The optimized factors were determined to be as follows: DT = 0.3 m, ST = 15.0 m, DGP = 0.05 m, and LD = 4.0 m, under which the semi-aerobic landfill could enhance SW degradation. Large diameter and spacing of tubes are favorable to improve the AZR at the top of the landfill, and the aerobic zone mainly exists near the ventilation tubes. These findings contribute to the development of more efficient and sustainable solid waste treatment strategies in semi-aerobic landfill.

8.
Sci Total Environ ; 904: 166883, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690764

RESUMEN

Mature landfill leachate is a refractory organic wastewater, and needs physical and chemical pretreatments contemporaneously, e.g. iron-carbon micro-electrolysis (IC-ME). In this study, a novel iron-carbon (Fe-C) material was synthesized from waste activated sludge to be utilized in IC-ME for landfill leachate treatment. The pyrolysis temperature, mass ratio of iron to carbon, and solid-liquid ratio in leachate treatment were optimized as 900 °C with 1.59 and 34.7 g/L. Under these optimal conditions, the chemical oxygen demand (COD) removal efficiency reached 79.44 %, which was 2.6 times higher than that of commercial Fe-C material (30.1%). This excellent COD removal performance was indicated to a better mesoporous structure, and uniform distribution of zero-valent iron in novel Fe-C material derived from sludge. The contribution order of COD removal in IC-ME treatment for landfill leachate was proven as coagulation, adsorption, and redox effects by a contrast experiment. The removal of COD includes synthetic organic compounds, e.g. carcinogens, pharmaceuticals and personal care products. The contents of CHO, CHON, and CHOS compounds of dissolved organic matter (DOM) in the leachate were decreased, and both the molecular weight and unsaturation of lipids, lignin, and tannic acids concentration were also reduced. Some newly generated small molecular DOM in the treated leachate further confirmed the existence of the redox effect to degrade DOM in leachate. The total cost of sludge-derived Fe-C material was only USD$ 152.8/t, which could save 76% of total compared with that of commercial Fe-C materials. This study expands the prominent source of Fe-C materials with excellent performance, and deepens the understanding of its application for leachate treatment.

9.
Water Res ; 243: 120421, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37523919

RESUMEN

Electrogenic biofilms in microbial electrochemical systems have played significant roles in simultaneous wastewater treatment and energy recovery owing to their unique extracellular electron transfer. Their formation has been shown to be regulated by electrical and chemical communication, but the interaction between these signal communication pathways has not been studied. This research investigated the coordination between intracellular c-di-GMP signaling and reinforced quorum sensing with or without exogenous HSL (a common quorum sensing molecule), on the formation of mixed-cultured electrogenic biofilm under electrical signaling disruption by tetraethylammonium (TEA, a broad-range potassium channel blocker). Intracellular c-di-GMP was spontaneously reinforced in response to TEA stress, and metagenomic analysis revealed that the dominant DGC (the genes for producing c-di-GMP) induced the eventual biofilm formation by mediating exopolysaccharide synthesis. Meanwhile, reinforced quorum sensing by exogenous HSL could also benefit the biofilm restoration, however, it alleviated the TEA-induced communication stress, resulting in the weakening of c-di-GMP dominance. Interestingly, suppressing electrical communication with or without HSL addition both induced selective enrichment of Geobacter of 85.5% or 30.1% respectively. Functional contribution analysis revealed the significant roles of Geobacter and Thauera in c-di-GMP signaling, especially Thauera in resistance to TEA stress. This study proposed a potential strategy for electrogenic biofilm regulation from the perspectives of cell-to-cell communication.


Asunto(s)
Biopelículas , Percepción de Quorum , Percepción de Quorum/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
10.
Food Res Int ; 170: 112995, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316021

RESUMEN

Glucoraphanin (GRA) is an aliphatic glucosinolate (GSL), and its hydrolysis product has powerful anticancer activity. ALKENYL HYDROXALKYL PRODUCING 2 (AOP2) gene, encodes a 2-oxoglutarate-dependent dioxygenase, which can catalyze GRA to form gluconapin (GNA). However, GRA only present in trace amounts in Chinese kale. To increase the content of GRA in Chinese kale, three copies of BoaAOP2 were isolated and edited using CRISPR/Cas9 system. The content of GRA was 11.71- to 41.29-fold (0.082-0.289 µmol g-1 FW) higher in T1 generation of boaaop2 mutants than in wild-type plants, and this was accompanied by an increase in the GRA/GNA ratio and reductions in the content of GNA and total aliphatic GSLs. BoaAOP2.1 is an effective gene for the alkenylation of aliphatic GSLs in Chinese kale. Overall, targeted editing of CRISPR/Cas9-mediated BoaAOP2s altered aliphatic GSL side-chain metabolic flux and enhanced the GRA content in Chinese kale, suggesting that metabolic engineering of BoaAOP2s has huge potential in improving nutritional quality of Chinese kale.


Asunto(s)
Brassica , Brassica/genética , Glucosinolatos , Sistemas CRISPR-Cas
11.
Chemosphere ; 331: 138783, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37119928

RESUMEN

The activation of peroxymonosulfate (PMS) by sodium ferric chlorophyllin (SFC), a natural porphyrin derivative extracted from chlorophyll-rich substances, was systematically investigated for facile degradation of bisphenol A (BPA). SFC/PMS is capable of degrading 97.5% of BPA in the first 10 min with the initial BPA concentration of 20 mg/L and pH = 3, whereas conventional Fe2+/PMS could only remove 22.6% of BPA under identical conditions. It demonstrates a prominent flexibility to a broad pH range of 3-11 with complete pollutant degradation. A remarkable tolerance toward concomitant high concentration of inorganic anions (100 mM) was also observed, among which (bi)carbonates can even accelerate the degradation. The nonradical oxidation species, including high-valent iron-oxo porphyrin species and 1O2, are identified as dominant species. Particularly, the generation and participation of 1O2 in the reaction is evidenced by experimental and theoretical methods, which is vastly different from the previous study. The specific activation mechanism is unveiled by density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. The results shed light on effective PMS activation by iron (III) porphyrin and the proposed natural porphyrin derivative would be a promising candidate for efficient abatement of recalcitrant pollutants toward complicated aqueous media in wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Porfirinas , Oxígeno Singlete , Peróxidos/química , Hierro/química
12.
Waste Manag ; 165: 51-58, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084643

RESUMEN

A one-step spray pyrolysis process is investigated for the first time in the field of spent lead-acid batteries (LABs) recycling. The spent lead paste that derived from spent LAB is desulfurized and then leached to generate the lead acetate (Pb(Ac)2) solution, which is then sprayed directly into a tube furnace to prepare the lead oxide (PbO) product by pyrolysis. The low-impurity lead oxide product (9 mg/kg Fe and 1 mg/kg Ba) is obtained under the optimized conditions (the temperature of 700 °C, the pumping rate of 50 L/h, and the spray rate of 0.5 mL/min). The major crystalline phases of the synthesized products are identified to be α-PbO and ß-PbO. In the spray pyrolysis process, Pb(Ac)2 droplets are sequentially transformed into various intermediate products: H2O(g)@Pb(Ac)2 solution, Pb(Ac)2 crystals@PbO, and the final PbO@C product. Owning its carbon skeleton structure, the recovered PbO@C product (carbon content of 0.14%) shows better performance than the commercial ball-milled lead oxide powder in battery tests, with higher initial capacity and better cycling stability. This study could provide a strategy for the short-route recovery of spent LABs.


Asunto(s)
Plomo , Pirólisis , Óxidos/química , Carbono
14.
Waste Manag ; 162: 72-82, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948115

RESUMEN

A co-pyrolysis process for non-metallic fractions (NMFs) from WPCBs with Bayer red mud (RM) is proposed to upgrade pyrolysis products in this study. High bromine fixation efficiency was realized, and higher content of lightweight pyrolysis tar was obtained. The mechanism of catalytic pyrolysis and simultaneous bromine fixation of NMFs by RM was investigated by experiments and theoretical calculations. The three inorganic components of Fe2O3, CaCO3 and Al2O3 in RM played key roles in the catalytic pyrolysis of NMFs, and their order of catalytic debromination effect was CaCO3 > Fe2O3 > Al2O3. By adding 15 wt% RM, the pyrolysis solid residue could fix 89.55 wt% bromine, compared with 35.42 wt% of NMFs without adding RM, due to the formation of FeBr2 and CaBr2 from Fe2O3 and CaCO3 in RM, respectively. Tar lightweighting was realized by reducing the energy barrier of the direct decomposition of tetrabromobisphenol A (TBBPA) in NMFs. The order of effect of the three key components on the tar lightweighting was Fe2O3 > Al2O3 > CaCO3. The content of lightweight tar in the tar obtained by catalytic pyrolysis of NMFs with 15 wt% RM was 44.29% higher than that in the tar obtained by direct pyrolysis of NMFs. This work provides a theoretical guidance for the low-cost and eco-friendly recycling of e-wastes by co-pyrolysis with RM.


Asunto(s)
Bromo , Pirólisis
15.
Water Res ; 233: 119769, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841170

RESUMEN

A sustainable strategy for P recovery from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization was proposed, and a high value-added product of vivianite was recovered. Effects of the type and dose of alkali activator on P transformation during sludge pyrolysis were investigated. 50 wt% dose of KHCO3 was determined as the alkali-activated pyrolysis condition. The content of water-soluble P (referred to as Water-P) in biochar derived from raw sludge (referred to as RS) and ferric sludge (Fenton's reagent conditioned sludge, referred to as FS) by KHCO3-activated pyrolysis at different temperatures was compared. The Fe element in the Fenton's reagent enhanced the content of Fe-bound P in the dewatered sludge, which was readily transformed into potassium phosphate during KHCO3-activated pyrolysis, thus increasing the Water-P content in the biochar derived from FS. The proportions of Water-P to total P in the biochar samples obtained by KHCO3-activated pyrolysis of RS and FS at 600 °C were 72.5% and 96.2%, respectively, which were notably higher than those in the biochar samples obtained by direct pyrolysis of RS and FS (3.5% and 0.5%), respectively. The water leaching solution of biochar obtained by KHCO3-activated pyrolysis of FS at 600 °C was purified to remove impurity elements, and vivianite with high purity was finally recovered by crystallization. A total P recovery efficiency of 88.08% was achieved throughout the process from sewage sludge to the final vivianite product. This study proposes a promising and sustainable approach for realizing the recovery of high value-added product vivianite from sewage sludge.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Fósforo/química , Aguas del Alcantarillado/química , Álcalis , Cristalización , Agua , Pirólisis , Carbón Orgánico/química
16.
Waste Manag ; 156: 118-129, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462342

RESUMEN

Ventilation is an efficient approach employed for accelerating stabilization and reducing aftercare of landfill, but its effect on leachate reduction is still elusive. To fill this knowledge gap, five lab-scale landfill reactors with different ventilation rates were established in this study. Suitable ventilation (e.g. 0.25-0.5 L·min-1·kg-1 dry solid of waste (DS)) was beneficial to promoting the stabilization of landfill, which effectively accelerated the degradation of organic matter and reduced water content of landfilled waste. Based on the mass balance of water, the dominant input water was initial water of landfilled waste (more than 94 %), which was partially converted to leachate and evaporated water. Ventilation enhanced the intensity of biochemical reactions heat to increase evaporated water content from 0 to 0.29 t/t DS while reducing the leachate generation significantly from 0.69 to 0.49 t/t DS with the increase of ventilation rate. Besides, the hydrophilic substances, such as humic acid-like substances, in landfilled waste increased, and the surface of the landfilled waste converted from smooth to rough. The reduction of the bound water content has a significant correlation with the degradation of organic matter content (p less than 0.05), which reduced the water-holding capacity of waste. Actinobacteriota and Firmicutes were the key bacterial phyla in the degradation of organic matter to promote bio-heat and evaporation of water, thus reducing leachate production under suitable ventilation conditions. Carbohydrates and amino acids were the main energy metabolism sources of bacteria during the landfill process. This study deepens our understanding of the leachate reduction mechanism in the micro-aerobic landfill.


Asunto(s)
Microbiota , Eliminación de Residuos , Contaminantes Químicos del Agua , Aguas Residuales , Agua/química , Reactores Biológicos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Bacterias , Residuos Sólidos/análisis
17.
J Hazard Mater ; 444(Pt A): 130402, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403452

RESUMEN

Hemin has attracted considerable interest as an efficient catalyst recently, however, its direct application is inefficient due to severe molecular aggregation. Immobilizing hemin on various supports is a feasible approach to address this issue. In this work, a CNTs-hemin catalyst was prepared by loading hemin onto multiwalled carbon nanotubes (CNTs) through ball milling. Compared with hemin, CNTs-hemin demonstrates remarkably enhanced performance in the peroxymonosulfate system, with a 650-fold improvement of apparent rate constant, reaching 97.8% degradation of sulfathiazole in 5 min. High-valent iron-oxo porphyrin cation ((Porp)+•FeIV=O) radicals are proposed as the dominant reactive species in the CNTs-hemin/peroxymonosulfate system instead of sulfate radicals (SO4•-), hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2). More in-depth mechanisms reveal that the strong electron transfer between CNTs and hemin promotes the generation of (Porp)+•FeIV=O radicals through a heterolysis pathway. This research enriches the understanding of the catalytic mechanism of supported biomimetic catalysts for PMS activation and provides a perspective on the role of support materials for catalytic activity.


Asunto(s)
Nanotubos de Carbono , Porfirinas , Hemina , Sulfatiazol , Cationes , Hierro
18.
Chemosphere ; 312(Pt 2): 137063, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36395889

RESUMEN

Arsenic-alkali residue (AAR) from antimony production can pose significant health and environmental hazards due to the risk of arsenic (As) leaching. In this study, geopolymer composite synthesized from fly ash (FA) was investigated for efficient stabilization of high-arsenic-containing AAR (As2O3 of 22.74 wt%). Two industrial wastes, e.g., granulated blast furnace slag (GBFS) with active calcium composition and water-quenched slag (WQS) from lead-zinc smelting with active iron composition, were investigated for the reinforcement of AAR geopolymer solidification. A wide pH stabilization (from pH = 3-pH = 12) of AAR with the geopolymer composite was successfully achieved, and As leaching concentration of geopolymer with the addition of 5 wt% AAR was significantly reduced from 2343.73 mg/L (AAR) to that below 0.18 mg/L, which successfully meet the regulatory limit of Chinese domestic waste landfill (GB, 18598-2019, 1.2 mg/L) and hazardous waste landfill (GB16889-2008, 0.3 mg/L). Johnbaumite (Ca5(AsO4)3(OH)) was formed in geopolymer composite and leached samples with initial pH from 2.6 to 6 (final pH from 5.54 to 13.15). Magnetite and iron hydroxide phases with strong adsorption and/or As co-precipitation capability were also observed. As stabilization was also achieved with iron oxidation from As(III) to As(V). This study solves the problem of unstable As leaching at different pH for the solidification of arsenic-bearing solid waste, and provides a promising and practical strategy for efficient solidification/stabilization of AAR as well as other similar arsenic-bearing solid wastes with geopolymer composite.


Asunto(s)
Arsénico , Calcio , Álcalis , Hierro , Calcio de la Dieta , Residuos Sólidos , Concentración de Iones de Hidrógeno
19.
Bioresour Technol ; 364: 128109, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36244602

RESUMEN

This study investigated the effects of electrical signaling disruption induced by adding tetraethylammonium (TEA, a potassium channel blocker) on the formation of mixed-cultured electroactive biofilms, especially the relative abundance of Geobacter over time. Results showed that TEA addition decelerated the biofilm formation, but selectively enriched Geobacter over time (45.8% on Day 32, 67.7% on Day 60 and 78.1% on Day 90), thus resulting in higher final extracellular electron transfer (EET) efficiency. Redundancy analysis (RDA) confirmed that TEA and operation time were significant factors for the selective enrichment of Geobacter. Moreover, increase in cellular processes and signal processing by PICRUSt analysis indicated adaptive responses of electrogenic biofilms to electrical signaling disruption. Furthermore, qRT-PCR indicated the compensatory roles of key cytochromes and pilA in electrochemical communication, which induced Geobacter enrichment. This work provided a broader understanding of electroactive biofilm regulation and potential applications for electricity generation and biosensor in the future.

20.
Chemosphere ; 309(Pt 1): 136744, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209859

RESUMEN

Developing efficient catalysts with low cost and environmental friendliness for peroxymonosulfate (PMS) activation attracts broad interest. In this study, TiO2-hemin was prepared by immobilizing hemin on TiO2 using a ball milling method, demonstrating 126.9-fold enhanced catalytic degradation efficiency compared with unsupported hemin in the PMS activation system, with 92.9% of 2,4,6-trichlorophenol (2,4,6-TCP) removed in 10 min. The superior performance is attributed to the strong interaction between TiO2 and hemin, which induces the redistribution of the electron density of hemin molecules. In the TiO2-hemin/PMS system, sulfate radicals (SO4•-), hydroxyl radicals (•OH), singlet oxygen (1O2), and superoxide radicals (O2•-) were identified, which only played a minor role in the elimination of 2,4,6-TCP. Instead, high-valent iron-oxo species were proposed and identified as the primary active species. This study provides a facile strategy to enhance the activity of the biomimetic catalyst and offers insight into the catalytic mechanism of iron porphyrin with PMS activation.


Asunto(s)
Hierro , Porfirinas , Oxígeno Singlete , Superóxidos , Hemina , Oxidación-Reducción , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA