Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39331553

RESUMEN

Recent advancements in spatially transcriptomics (ST) technologies have enabled the comprehensive measurement of gene expression profiles while preserving the spatial information of cells. Combining gene expression profiles and spatial information has been the most commonly used method to identify spatial functional domains and genes. However, most existing spatial domain decipherer methods are more focused on spatially neighboring structures and fail to take into account balancing the self-characteristics and the spatial structure dependency of spots. Therefore, we propose a novel model called SpaGCAC, which recognizes spatial domains with the help of an adaptive feature-spatial balanced graph convolutional network named AFSBGCN. The AFSBGCN can dynamically learn the relationship between spatial local topology structures and the self-characteristics of spots by adaptively increasing or declining the weight on the self-characteristics during message aggregation. Moreover, to better capture the local structures of spots, SpaGCAC exploits a local topology structure contrastive learning strategy. Meanwhile, SpaGCAC utilizes a probability distribution contrastive learning strategy to increase the similarity of probability distributions for points belonging to the same category. We validate the performance of SpaGCAC for spatial domain identification on four spatial transcriptomic datasets. In comparison with seven spatial domain recognition methods, SpaGCAC achieved the highest NMI median of 0.683 and the second highest ARI median of 0.559 on the multi-slice DLPFC dataset. SpaGCAC achieved the best results on all three other single-slice datasets. The above-mentioned results show that SpaGCAC outperforms most existing methods, providing enhanced insights into tissue heterogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA