Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Regen Biomater ; 11: rbae044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962115

RESUMEN

Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.

2.
Sci Rep ; 14(1): 15702, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977747

RESUMEN

The present study investigates the efficacy of newly developed Zr-based metal-organic frameworks, specifically MIP-206, and its amine-modified counterpart, MIP-206-NH2, for the re-covery of antimony (Sb) from both synthetic and actual mining wastewater. Batch method studies were employed to examine the effect of waste media pH, Sb concentration, process kinetics, and the performance of the regeneration solution. MIP-206-NH2 exhibited impressive separation capabilities, achieving 102.18 mg/g and 63.23 mg/g for Sb (V) and Sb (III), respectively. In contrast, the pristine MIP-206 reached maximum values of 26.26 mg/g for Sb (V) and 16.95 mg/g for Sb (III). The separation process was well-described by the Langmuir equation, and the kinetics followed the pseudo-second-order model. Although the amine modification resulted in a decrease in the surface area of MIP-206 from 1345.21 to 1169.86 m2/g, SEM and XRD analyses confirmed that the structural integrity of MIP-206-NH2 remained unchanged. In terms of reusability, MIP-206-NH2 maintained up to 90% of its separation performance over 9 cycles, while MIP-206 demonstrated effectiveness for 7 cycles. The regeneration solution exhibited a capacity of approximately 0.63 mol/L for Sb (V) and 0.71 mol/L for Sb (III). Furthermore, MIP-206 and MIP-206-NH2 demonstrated successful application in selectively separating Sb from real mining wastewater.

3.
J Food Drug Anal ; 32(2): 213-226, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934690

RESUMEN

Citrus peels contain abundant polyphenols, particularly flavonoids, and have been shown to exert lipid accumulation decreasing ability. In this study, Citrus depressa peel applied to oven drying and extracted with ethanol extract as CDEE to analyze its flavonoids compositions and investigated its effects on a high-fat diet (HFD)-induced obese mice model. CDEE contained several flavonoids such as hesperidin, sinesentin, nobiletin, tangeretin, 5-demethylnobiletin, and 5-demethyltangeretin. The mice fed an HFD, and administration of 2% CDEE to could decrease weight gain, abdominal fat weight, inguinal fat weight, and the adipocyte size, and CDEE also reduced serum total cholesterol (TCHO), triacylglycerol (TG) compared with mice fed only on HFD. CDEE hindered lipid accumulation through a decreased fatty acid synthase (FAS) protein expression via upregulation of the protein expression of AMP-activated protein kinase α (AMPKα). Moreover, CDEE modulated gut microbiota that altered by HFD through an increased abundance of Lactobacillus reuteri compared with the HFD group. The results demonstrated that CDEE helps decrease lipid accumulation through the AMPK pathway, which also indicates a prebiotic-like effect on gut microbiota.


Asunto(s)
Citrus , Dieta Alta en Grasa , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Extractos Vegetales , Prebióticos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Citrus/química , Masculino , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Prebióticos/administración & dosificación , Prebióticos/análisis , Dieta Alta en Grasa/efectos adversos , Humanos , Triglicéridos/metabolismo , Triglicéridos/sangre , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos
4.
Nat Commun ; 15(1): 5373, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918399

RESUMEN

Electrochemical batteries - essential to vehicle electrification and renewable energy storage - have ever-present reaction interfaces that require compromise among power, energy, lifetime, and safety. Here we report a chip-in-cell battery by integrating an ultrathin foil heater and a microswitch into the layer-by-layer architecture of a battery cell to harness intracell actuation and mutual thermal management between the heat-generating switch and heat-absorbing battery materials. The result is a two-terminal, drop-in ready battery with no bulky heat sinks or heavy wiring needed for an external high-power switch. We demonstrate rapid self-heating (∼ 60 °C min-1), low energy consumption (0.138% °C-1 of battery energy), and excellent durability (> 2000 cycles) of the greatly simplified chip-in-cell structure. The battery electronification platform unveiled here opens doors to include integrated-circuit chips inside energy storage cells for sensing, control, actuating, and wireless communications such that performance, lifetime, and safety of electrochemical energy storage devices can be internally regulated.

5.
Sci Total Environ ; 939: 173558, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38823700

RESUMEN

Center Pivot Irrigation system (CPIs) is widely used in newly exploited arable land in sandy lands. These sandy lands are currently stable because of climate change and ecological restoration efforts since the beginning of the 21st century in northern China. The exploitation of these fixed sandy lands to arable land with CPIs may affect the soil wind erosion, yet it remains unknown. The temporal changes of CPIs and its effect on wind erosion module were analyzed and modeled from 2000 to 2020 in Mu-Us sandy land using satellite images and Revised Wind Erosion Equation (RWEQ). The establishment of CPIs started from 2010, boomed in 2015 and peaked in 2020. They were mainly transformed from woodland, grassland, and barren land near rivers in east and southeast, and from cropland in inter-dunes in west and southwest of Mu-Us sandy land. The temporal and spatial pattern of CPIs well aligns with the land consolidation and requisition-compensation balance policies. In most of the Mu-Us sandy land, the annual erosion module is <25 t ha-1 a-1. Despite great variation, the annual, Winter and Spring erosion module of the Mu-Us sandy land or in Otog Qian and Yuyang, the CPIs concentrated counties, all decreased during 2000-2019. Although, wind erosion module in CPIs was lower than the surrounding area, it increased in 2019 given the same climate conditions as in 2010. Our results suggest 1) the establishment of CPIs in Mu-Us sandy land greatly depends on the local policy and natural endowment, and 2) although the set-up of CPIs showed no impact on the wind erosion with CPIs accounting for <1 % of Mu-Us sandy land, post-harvest of CPIs should be carefully concerned to prevent soil wind erosion.

6.
Nat Commun ; 15(1): 5021, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866768

RESUMEN

A pressing challenge in spatially resolved transcriptomics (SRT) is to benchmark the computational methods. A widely-used approach involves utilizing simulated data. However, biases exist in terms of the currently available simulated SRT data, which seriously affects the accuracy of method evaluation and validation. Herein, we present scCube ( https://github.com/ZJUFanLab/scCube ), a Python package for independent, reproducible, and technology-diverse simulation of SRT data. scCube not only enables the preservation of spatial expression patterns of genes in reference-based simulations, but also generates simulated data with different spatial variability (covering the spatial pattern type, the resolution, the spot arrangement, the targeted gene type, and the tissue slice dimension, etc.) in reference-free simulations. We comprehensively benchmark scCube with existing single-cell or SRT simulators, and demonstrate the utility of scCube in benchmarking spot deconvolution, gene imputation, and resolution enhancement methods in detail through three applications.


Asunto(s)
Simulación por Computador , Perfilación de la Expresión Génica , Programas Informáticos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Humanos , Análisis de la Célula Individual/métodos , Animales , Algoritmos
7.
Materials (Basel) ; 17(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38793458

RESUMEN

The development of an advanced dye adsorbent that possesses a range of beneficial characteristics, such as high adsorption capacity, swift adsorption kinetics, selective adsorption capability, and robust reusability, remains a challenge. This study introduces a facile method for fabricating an amine-rich porous adsorbent (ARPA), which is specifically engineered for the adsorptive removal of anionic dyes from aqueous solutions. Through a comprehensive assessment, we have evaluated the adsorption performance of ARPA using two benchmark dyes: amaranth (ART) and tartrazine (TTZ). Our findings indicate that the adsorption process reaches equilibrium in a remarkably short timeframe of just 20 min, and it exhibits an excellent correlation with both the Langmuir isotherm model and the pseudo-second-order kinetic model. Furthermore, ARPA has demonstrated an exceptional maximum adsorption capacity, with values of 675.68 mg g-1 for ART and 534.76 mg g-1 for TTZ. In addition to its high adsorption capacity, ARPA has also shown remarkable selectivity, as evidenced by its ability to selectively adsorb TTZ from a mixed dye solution, a feature that is highly desirable for practical applications. Beyond its impressive adsorption capabilities, ARPA can be efficiently regenerated and recycled. It maintains a high level of original removal efficiency for both ART (76.8%) and TTZ (78.9%) even after five consecutive cycles of adsorption and desorption. Considering the simplicity of its synthesis and its outstanding adsorption performance, ARPA emerges as a highly promising material for use in dye removal applications. Consequently, this paper presents a straightforward and feasible method for the production of an effective dye adsorbent for environmental remediation.

8.
J Org Chem ; 89(11): 7859-7864, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38773955

RESUMEN

Regioselective methods to access alkylated tetrazoles still remain a challenging goal. Herein, we describe a novel regioselective protocol for N2-arylation of tetrazoles with diazo compounds using inexpensive Al(OTf)3. This reaction could be conducted under mild conditions to access a diverse array of alkylated tetrazoles with 2-substituted tetrazoles as the major products, demonstrating a comprehensive range of substrate compatibility and excellent functional group compatibility. Mechanistic studies revealed a carbene-free process in this reaction procedure. Furthermore, the scale-up reaction and transformations of the N2-arylation of tetrazole products demonstrated the potential of this strategy.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38581929

RESUMEN

Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 µL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.


Asunto(s)
Límite de Detección , Nandrolona , Bovinos , Animales , Nandrolona/análisis , Nandrolona/orina , Modelos Lineales , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Aguas del Alcantarillado/química , Aguas del Alcantarillado/análisis , Alimentación Animal/análisis , Anabolizantes/orina , Anabolizantes/análisis
10.
J Agric Food Chem ; 72(15): 8859-8870, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564481

RESUMEN

In this study, an enzymatic reaction was developed for synthesizing pure triacylglycerols (TAG) with a high content of palmitoleic acid (POA) using fish byproduct oil. The characteristics of synthesized structural TAGs rich in POA (POA-TAG) were analyzed in detail through ultrahigh-performance liquid chromatography Q Exactive orbitrap mass spectrometry. Optimal conditions were thoroughly investigated and determined for reaction systems, including the use of Lipozyme TL IM and Novozym 435, 15 wt % lipase loading, substrate mass ratio of 1:3, and water content of 2.5 and 0.5 wt %, respectively, resulting in yields of 67.50 and 67.45% for POA-TAG, respectively. Multivariate statistical analysis revealed that TAG 16:1/16:1/20:4, TAG 16:1/16:1/16:1, TAG 16:1/16:1/18:1, and TAG 16:0/16:1/18:1 were the main variables in Lipozyme TL IM and Novozym 435 enzyme-catalyzed products under different water content conditions. Finally, the fate of POA-TAG across the gastrointestinal tract was simulated using an in vitro digestion model. The results showed that the maximum release of free fatty acids and apparent rate constants were 71.44% and 0.0347 s-1, respectively, for POA-TAG lipids, and the physical and structural characteristics during digestion depended on their microenvironments. These findings provide a theoretical basis for studying the rational design of POA-structural lipids and exploring the nutritional and functional benefits of POA products.


Asunto(s)
Ácidos Grasos Monoinsaturados , Aceites de Pescado , Agua , Triglicéridos/química , Aceites de Pescado/química , Digestión
11.
Sci Total Environ ; 929: 172611, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642764

RESUMEN

Understanding the dynamics of carbon and water vapor fluxes in arid inland river basin ecosystems is essential for predicting and assessing the regional carbon-water budget amid climate change. However, studies aiming to unravel the mechanisms driving the variations and coupling process of regional carbon-water budget in a changing environment in arid regions are limited. Here, we used the eddy covariance technique to analyze the relationship between CO2 and H2O fluxes in three typical ecosystems across the upper, middle, and lower reaches of an arid inland river basin in Northwestern China. Our results showed that all ecosystems acted as carbon sinks, with the alpine swamp meadow, cropland, and desert shrubland sequestrating -300.2 ± 0.01, -644.8 ± 2.9, and - 203.7 ± 22.5 g C m-2 yr-1, respectively. Air temperature (Ta) primarily controlled daily gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) in the irrigated cropland during the growing season, while soil temperature (Ts) and vapor pressure deficit (VPD) regulated these parameters in the alpine swamp meadow and desert shrubland. Additionally, Ta and net radiation (Rn) controlled daily evapotranspiration (ET) in cropland, while Ts and Rn regulated ET at other sites. Consequently, carbon and water vapor fluxes of all three ecosystems tended to be energy-limited during the growing season. The differential responses of carbon and water vapor fluxes in the upper, middle, and lower reaches of these ecosystems to biophysical factors determined their distinct coupling and variations in water use efficiency. Notably, the desert shrub ecosystem in the lower reach of the basin maintained a stable balance between carbon gain and water loss, indicating adaptation to aridity. This study provides valuable insights into the underlying mechanisms behind the changes in carbon and water vapor fluxes and water-use efficiency in arid river basin ecosystems.

12.
Nat Commun ; 15(1): 1513, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374036

RESUMEN

Face-to-face double subduction systems, in which two oceanic plates subduct toward each other, are essential elements of plate tectonics. Two subduction zones in such systems are typically uneven in age and their spatially and temporally variable dynamics remain enigmatic. Here, with 2D numerical modelling, we demonstrate that the onset of the younger subduction zone strongly changes the dynamics of the older subduction zone. The waxing younger subduction may gradually absorb plate convergence from the older one, resulting in older subduction waning featured by the dramatic decrease in subduction rate and trench retreat. The dynamical transformation of subduction predominance alters the intraplate stress and mantle flow, regulating the relative motion among the three different plates. The process of waxing and waning of subduction zones controls plate motion reorganisation, providing a reference to interpret the past, present, and future evolution of several key double subduction regions found on the modern Earth.

13.
J Sci Food Agric ; 104(7): 3982-3991, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252712

RESUMEN

BACKGROUND: Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), ß-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 µg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION: These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Citrus , Monoterpenos Ciclohexánicos , Neoplasias , Aceites Volátiles , Animales , Ratones , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Limoneno/farmacología , Citrus/química , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aceites de Plantas/química
14.
Sci Total Environ ; 916: 170123, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38232842

RESUMEN

In this study, a rainfall simulation device was employed to investigate the response mechanism of soil leachate and disinfection by-products formation potential (DBPsFP) to extreme precipitation events. The results revealed that the aromaticity of dissolved organic matter (DOM) and the concentration of hydrophobic DOM containing aromatic carbon groups in leachate decreased with rising temperature. The humification degree of DOM decreased at 25 °C (99 mm/h), while the humification degree and protein-like level of DOM increased under high temperatures droughts (45 °C and 65 °C). Higher temperatures resulted in the leach of more microbial-derived humus and low molecular phenolic compounds from soil and broadened the range of molecular weight distribution. Increasing temperature increased DBPsFP and DBPs species and caused the precursors of haloacetic acids (HAAs) in leachate to become more hydrophobic, while the precursors of trihalomethanes (THMs) became more hydrophilic. Most importantly, the increased temperature attenuated the rainfall-mediated dilution of organic pollutant concentration, and temperature has a more significant effect than extreme rainfall in DOM abundance and the formation potential (or species) of DBPs. The results help to better understand the impact of climate change on the physicochemical processes of water quality.

15.
Proc Natl Acad Sci U S A ; 120(51): e2312876120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085783

RESUMEN

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.

16.
Cell Genom ; 3(12): 100446, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38116121

RESUMEN

Capturing and depicting the multimodal tissue information of tissues at the spatial scale remains a significant challenge owing to technical limitations in single-cell multi-omics and spatial transcriptomics sequencing. Here, we developed a computational method called SpaTrio that can build spatial multi-omics data by integrating these two datasets through probabilistic alignment and enabling further analysis of gene regulation and cellular interactions. We benchmarked SpaTrio using simulation datasets and demonstrated its accuracy and robustness. Next, we evaluated SpaTrio on biological datasets and showed that it could detect topological patterns of cells and modalities. SpaTrio has also been applied to multiple sets of actual data to uncover spatially multimodal heterogeneity, understand the spatiotemporal regulation of gene expression, and resolve multimodal communication among cells. Our data demonstrated that SpaTrio could accurately map single cells and reconstruct the spatial distribution of various biomolecules, providing valuable multimodal insights into spatial biology.

17.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960923

RESUMEN

AIMS: This study aimed to investigate the inhibitory effect of tannic acid (TA) on the growth of Apiospora arundinis and 3-Nitropropionic acid (3-NPA) production. METHODS AND RESULTS: To investigate the antifungal mechanism, the effects of TA on the hypha growth, electrical conductivity, hypha morphology, defense-related enzymes, and 3-NPA production of A. arundinis were studied. TA concentrations of 640 and 1280 µg ml-1 exhibited strong antifungal activity against A. arundinis. The results of scanning electron microscopy and transmission electron microscopy showed that the hypha of the A. arundinis was severely deformed after TA treatment, and the cell membrane was blurred and thin, vacuoles were obviously shrunken and smaller, and most of the organelles were decomposed into irregular fragments. The increased electrical conductivity and malondialdehyde content indicated that TA caused peroxidation of unsaturated fatty acids and damaged the structure of the cell membrane. The decrease of intracellular ATPase and succinate dehydrogenase content indicated that TA damaged the function of mitochondria, and participated in the inhibition of respiratory metabolism. In addition, TA significantly reduced 3-NPA production and completely inhibited 3-NPA production at 640 and 1280 µg ml-1. CONCLUSION: TA effectively inhibited both growth of A. arundinis in vitro and 3-NPA production.


Asunto(s)
Antifúngicos , Mitocondrias , Antifúngicos/farmacología , Propionatos/farmacología
18.
Front Med (Lausanne) ; 10: 1270176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869165

RESUMEN

Objective: This study aimed to investigate the accuracy and consistency of different ultrasound protocols for the measurement of gastrocnemius muscle (GM) thickness and to identify a suitable ultrasound scheme that can be used to detect the low muscle mass in older with disability. Materials and methods: In this cross-sectional study, each participant underwent three different ultrasound protocols for the measurement of the GM thickness, and each measurement was repeated three times. The three measurement schemes were as follows: method A, lying on the examination bed in a prone position with legs stretched and relaxed and feet hanging outside the examination bed; method B, lateral right side lying position with legs separated (left leg flexed and right leg in a relaxed state); and method C, right side lying position with legs together and lower limb muscles in a relaxed state. The low muscle mass was determined by averaging two or three measurements of the GM thickness determined using different sonographic protocols. Results: The study included 489 participants. The difference in the prevalence of low muscle mass identified between two and three replicates of the same measurement protocol ranged from 0 to 1.3%. Considering the three repeated measurements of the method A as the reference, the area under the curve (AUC) in different measurement schemes were 0.977-1 and 0.973-1 in males and females, respectively. Furthermore, male and female Kappa values from low to high were 0.773, 0.801, 0.829, 0.839, and 0.967 and 0.786, 0.794, 0.804, 0.819, and 0.984, respectively. Conclusion: Different ultrasound measurement protocols showed high accuracy and consistency in identifying low muscle mass. Repeating the measurements two or three times was found to be feasible.

19.
Toxics ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37888676

RESUMEN

Shiyang River Watershed is an important ecological barrier and agricultural production area in Northwest China, and the study of soil heavy metal content, distribution, and sources is important for agricultural product safety, pollution control, and ecosystem health. In this paper, 140 soil samples were collected from 28 stations to assess the level of heavy metal (Arsenic (As), Copper (Cu), Lead (Pb), Cadmium (Cd), Chromium (Cr), Mercury (Hg), Nickel (Ni), Zinc (Zn)) contamination, pollutant sources and influencing factors of soil in Shiyang River Watershed through determination of the metal contents and statistical analysis. The results indicated that the soils in the study area are typical saline soils in arid zones. The enrichment factors (EF) of As, Cr, Cu, Ni, Zn, and Pb indicate no contamination, and the EFs of Cd and Hg suggested minor contamination. Although the concentrations of Cd and Hg in soil are lower than others, they are more biotoxic and exhibit a moderate-high ecological risk. The index of geoaccumulation (Igeo) values reflect that most of the stations, especially the three groups of samples from depths of 10-20 cm, 20-40 cm, and 40-80 cm, are below the contamination threshold for all heavy metals. The chemical speciation of heavy metals, principal component analysis, and correlation analysis showed that Cr, Cu, Pb, Cd, Ni, and Zn mainly come from the natural accumulation upon weathering of soil-forming matrices. Hg and As mainly come from anthropogenic contributions. The effect of agricultural crop cultivation on soil heavy metal contamination is mainly through farm irrigation and crop-soil interactions, which accelerate the release of heavy metals through the weathering of soil-forming parent material and irrigation, which transports the heavy metals below the surface. The results of this study can provide a scientific basis for the involved authorities to formulate reasonable policies on environmental protection and pollution control.

20.
J Genet Genomics ; 50(9): 641-651, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544594

RESUMEN

Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context, significantly enhancing our understanding of the intricate and multifaceted biological system. With an increasing focus on spatial heterogeneity, there is a growing need for unbiased, spatially resolved omics technologies. Laser capture microdissection (LCM) is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest (ROIs) from heterogeneous tissues, with resolutions ranging from single cells to cell populations. Thus, LCM has been widely used for studying the cellular and molecular mechanisms of diseases. This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research. Key attributes of application cases are also highlighted, such as throughput and spatial resolution. In addition, we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research, disease diagnosis, and targeted therapy from the perspective of high-throughput, multi-omics, and single-cell resolution.


Asunto(s)
Investigación Biomédica , Multiómica , Captura por Microdisección con Láser/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA