Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 320, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334441

RESUMEN

Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.


Asunto(s)
Inmunomodulación , Trasplante de Hígado , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/citología , Animales , Daño por Reperfusión/terapia , Daño por Reperfusión/inmunología , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Regeneración Hepática
2.
Cytotechnology ; 76(5): 547-558, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39188645

RESUMEN

Although adipose tissue-derived mesenchymal stem cell (ADSC) transplantation has been effectively used to treat osteoarthritis (OA), the low cell survival rate induced by the inflammatory and oxidative stress, severely affects the therapeutic efficiency of ADSC transplantation in OA. This study was designed to evaluate whether melatonin pretreatment could improve ADSC survival and its therapeutic efficacy in OA. The papain-induced OA rats were pretreated with melatonin via intra-articular injection and then intra-articular injected with indocyanine green (ICG)-labeled ADSCs (3 × 106/rat). Afterward, ADSC retention was evaluated by NIR-II fluorescence imaging. The tibia and synovial fluid were collected for histopathological examination and ELISA assay, respectively. To confirm the anti-inflammatory effect of melatonin, a TNF-α and IL-1ß-induced cell model was used to evaluate the protective effects of melatonin on ADSC viability, cell apoptosis, and migration. Our results showed that melatonin pretreatment enhanced ADSC survival and improved the therapeutic effects of ADSC transplantation on cartilage repair, and anti-inflammation by reducing TNF-α, IL-6, IL-1ß, and IL-12 in vivo. In particular, we also found that melatonin promoted ADSC viability and migration, and reduced cell apoptosis in vitro. In conclusion, this study supports that melatonin pretreatment can effectively improve ADSC survival and therapeutic efficiency in OA by reducing inflammatory injuries, which provides a novel strategy for enhancing ADSC therapy.

3.
J Pharm Biomed Anal ; 250: 116389, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116584

RESUMEN

Immunosuppressive drugs (ISDs) are given to avoid the allograft rejection after transplantation. The concentrations of ISDs should be closely monitored owing to their wide inter-individual variability in its pharmacokinetics and narrow therapeutic window. Currently, the whole blood concentration measurement is the major approach of therapeutic drug monitoring of clinical ISDs in organ transplantation. Its correlation with the efficacy of ISDs remains elusive. While the acute rejection after transplantation may occur even when whole-blood ISDs concentrations are within the target range. Since the site of action of ISDs are within the lymphocyte, direct measurement of drug exposure in target cells may more accurately reflect the clinical efficacy of ISDs. Although several methods have been developed for the peripheral blood mononuclear cells (PBMCs) extraction and drug concentration measurement, the complex pre-processing has limited the study of the relationship between intracellular ISDs concentrations and the occurrence of rejection. In this study, the extraction of ISDs in PBMCs was carried out by the liquid-liquid extraction with low temperature purification, without centrifugation. The lower limit of quantitation were 0.2 ng/mL for cyclosporine A, tacrolimus and sirolimus, 1.0 ng/mL for mycophenolic acid, and the within-run and between-run coefficient of variations were both less than 12.4 %. The calibration curves of mycophenolic acid had a linear range (ng/mL): 1.0-128.0 (r2 = 0.9992). The calibration curves of other three ISDs had a linear range (ng/mL): 0.2-20.48 (r2 > 0.9956). A total of 157 clinical samples were analyzed by the UPLC-MS/MS for ISDs concentration in blood or plasma ([ISD]blood or plasma) and the concentration within PBMCs ([ISD]PBMC). Although there was strong association between [ISD]PBMC and [ISD]blood or plasma, the large discrepancies between concentration within [ISD]blood or plasma and [ISD]PBMC were observed in a small proportion of clinical samples. The developed method with short analysis time and little amounts of blood sample can be successfully applied to therapeutic drug monitoring of ISDs in PBMCs for analysis of large numbers of clinical samples and is helpful to explore the clinical value of ISDs concentration in PBMCs.


Asunto(s)
Monitoreo de Drogas , Inmunosupresores , Leucocitos Mononucleares , Extracción Líquido-Líquido , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Extracción Líquido-Líquido/métodos , Inmunosupresores/sangre , Cromatografía Líquida de Alta Presión/métodos , Monitoreo de Drogas/métodos , Tacrolimus/sangre , Ácido Micofenólico/sangre , Ácido Micofenólico/farmacocinética , Ciclosporina/sangre , Reproducibilidad de los Resultados , Límite de Detección , Sirolimus/sangre , Cromatografía Líquida con Espectrometría de Masas
4.
Adv Sci (Weinh) ; 11(34): e2400951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973319

RESUMEN

Growing evidences have proved that tumors evade recognition and attack by the immune system through immune escape mechanisms, and PDL1/Pbrm1 genes have a strong correlation with poor response or resistance to immune checkpoint blockade (ICB) therapy. Herein, a multifunctional biomimetic nanocarrier (siRNA-CaP@PD1-NVs) is developed, which can not only enhance the cytotoxic activity of immune cells by blocking PD1/PDL1 axis, but also reduce tumor immune escape via Pbrm1/PDL1 gene silencing, leading to a significant improvement in tumor immunosuppressive microenvironment. Consequently, the nanocarrier promotes DC cell maturation, enhances the infiltration and activity of CD8+ T cells, and forms long-term immune memory, which can effectively inhibit tumor growth or even eliminate tumors, and prevent tumor recurrence and metastasis. Overall, this study presents a powerful strategy for co-delivery of siRNA drugs, immune adjuvant, and immune checkpoint inhibitors, and holds great promise for improving the effectiveness and safety of current immunotherapy regimens.


Asunto(s)
Carcinoma Hepatocelular , Terapia Genética , Inmunoterapia , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Inmunoterapia/métodos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Terapia Genética/métodos , Humanos , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Modelos Animales de Enfermedad , Biomimética/métodos , Línea Celular Tumoral , Materiales Biomiméticos , Antígeno B7-H1/inmunología , Antígeno B7-H1/genética , Antígeno B7-H1/antagonistas & inhibidores , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
5.
Cell Death Discov ; 9(1): 316, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37773181

RESUMEN

The N6-methyladenosine (m6A) RNA methyltransferase METTL16 is an emerging player in RNA modification landscape and responsible for the deposition of m6A in a few transcripts. AURKA (aurora kinase A) has been confirmed as an oncogene in cancer development including hepatocellular carcinoma (HCC). Nevertheless, it remains unclear whether METTL16 mediated m6A modification of lncRNAs can regulate AURKA activation in cancer progression. Here we aimed to investigate the functional links between lncRNAs and the m6A modification in AURKA signaling and HCC progression. Here we show that LncRNA TIALD (transcript that induced AURKA Lysosomal degradation) was down-regulated in HCC tissues by METTL16 mediated m6A methylation to facilitate its RNA degradation, and correlates with poor prognosis. Functional assays reveal that TIALD inhibits HCC metastasis both in vitro and in vivo. Mechanistically, TIALD directly interacts with AURKA and facilitate its degradation through the lysosomal pathway to inhibited EMT and metastasis of HCC. AURKA's specific inhibitor alisertib exerts effective therapeutic effect on liver cancer with low TIALD expression, which might provide a new insight into HCC therapy. Our study uncovers a negative functional loop of METTL16-TIALD-AURKA axis, and identifies a new mechanism for METTL16 mediated m6A-induced decay of TIALD on AURKA signaling in HCC progression, which may provide potential prognostic and therapeutic targets for HCC.

6.
Stem Cell Res Ther ; 14(1): 235, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667383

RESUMEN

Although mesenchymal stem cell (MSC) transplantation provides an alternative strategy for end-stage liver disease (ESLD), further widespread application of MSC therapy is limited owing to low cell engraftment efficiency. Improving cell engraftment efficiency plays a critical role in enhancing MSC therapy for liver diseases. In this review, we summarize the current status and challenges of MSC transplantation for ESLD. We also outline the complicated cell-homing process and highlight how low cell engraftment efficiency is closely related to huge differences in extracellular conditions involved in MSC homing journeys ranging from constant, controlled conditions in vitro to variable and challenging conditions in vivo. Improving cell survival and homing capabilities enhances MSC engraftment efficacy. Therefore, we summarize the current strategies, including hypoxic priming, drug pretreatment, gene modification, and cytokine pretreatment, as well as splenectomy and local irradiation, used to improve MSC survival and homing capability, and enhance cell engraftment and therapeutic efficiency of MSC therapy. We hope that this review will provide new insights into enhancing the efficiency of MSC engraftment in liver diseases.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Hepatopatías , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Hepatopatías/terapia , Supervivencia Celular
7.
Commun Biol ; 6(1): 621, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296221

RESUMEN

Oncolytic virotherapy can lead to tumor lysis and systemic anti-tumor immunity, but the therapeutic potential in humans is limited due to the impaired virus replication and the insufficient ability to overcome the immunosuppressive tumor microenvironment (TME). To solve the above problems, we identified that Indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitor Navoximod promoted herpes simplex virus type 1 (HSV-1) replication and HSV-1-mediated oncolysis in tumor cells, making it a promising combination modality with HSV-1-based virotherapy. Thus, we loaded HSV-1 and Navoximod together in an injectable and biocompatible hydrogel (V-Navo@gel) for hepatocellular carcinoma (HCC) virotherapy. The hydrogel formed a local delivery reservoir to maximize the viral replication and distribution at the tumor site with a single-dose injection. Notably, V-Navo@gel improved the disease-free survival time of HCC- bearing mice and protects the mice against tumor recurrence. What's more, V-Navo@gel also showed an effective therapeutic efficacy in the rabbit orthotopic liver cancer model. Mechanistically, we further discovered that our combination strategy entirely reprogramed the TME through single-cell RNA sequencing. All these results collectively indicated that the combination of Navoximod with HSV-1 could boost the viral replication and reshape TME for tumor eradication through the hydrogel reservoir.


Asunto(s)
Carcinoma Hepatocelular , Herpesvirus Humano 1 , Neoplasias Hepáticas , Humanos , Ratones , Animales , Conejos , Herpesvirus Humano 1/genética , Carcinoma Hepatocelular/terapia , Hidrogeles , Microambiente Tumoral , Recurrencia Local de Neoplasia , Inmunoterapia/métodos
8.
Microbiol Resour Announc ; 11(11): e0090522, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314918

RESUMEN

Bacteriophage TaidaOne was isolated from soil collected in Taipei, Taiwan, using the host Streptomyces griseus. It is a siphovirus with a 56,183-bp genome that contains 86 protein-coding genes. Based on gene content similarity, it was assigned to actinobacteriophage subcluster BI1, within which only TaidaOne and GirlPower genomes contain an acetyltransferase homolog gene.

9.
Small ; 18(41): e2202551, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089652

RESUMEN

The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Micelas , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete , Tiofenos
10.
ACS Synth Biol ; 11(2): 888-899, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35113526

RESUMEN

Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.


Asunto(s)
Anticuerpos Biespecíficos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Glipicanos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Mamíferos , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Adv Sci (Weinh) ; 9(11): e2105631, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35142445

RESUMEN

Hepatocellular carcinoma (HCC) commonly emerges in an immunologically "cold" state, thereafter protects it away from cytolytic attack by tumor-infiltrating lymphocytes, resulting in poor response to immunotherapy. Herein, an acidic/photo-sensitive dendritic cell (DCs)-based neoantigen nano-vaccine has been explored to convert tumor immune "cold" state into "hot", and remodel tumor-associated neutrophils to potentiate anticancer immune response for enhancing immunotherapy efficiency. The nano-vaccine is constructed by SiPCCl2 -hybridized mesoporous silica with coordination of Fe(III)-captopril, and coating with exfoliated membrane of matured DCs by H22-specific neoantigen stimulation. The nano-vaccines actively target H22 tumors and induce immunological cell death to boost tumor-associated antigen release by the generation of excess 1 O2 through photodynamic therapy, which act as in situ tumor vaccination to strengthen antitumor T-cell response against primary H22 tumor growth. Interestingly, the nano-vaccines are also home to lymph nodes to directly induce the activation and proliferation of neoantigen-specific T cells to suppress the primary/distal tumor growth. Moreover, the acidic-triggered captopril release in tumor microenvironment can polarize the protumoral N2 phenotype neutrophils to antitumor N1 phenotype for improving the immune effects to achieve complete tumor regression (83%) in H22-bearing mice and prolong the survival time. This work provides an alternative approach for developing novel HCC immunotherapy strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Captopril , Carcinoma Hepatocelular/terapia , Células Dendríticas/patología , Compuestos Férricos , Neoplasias Hepáticas/terapia , Ratones , Neutrófilos/patología , Microambiente Tumoral
12.
ACS Nano ; 16(2): 2889-2900, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35084178

RESUMEN

Cell survival rate determines engraftment efficiency in adipose-derived mesenchymal stem cell (ADSC)-based regenerative medicine. In vivo monitoring of ADSC viability to achieve effective tissue regeneration is a major challenge for ADSC therapy. Here, we developed an activated near-infrared II (NIR-II) fluorescent nanoparticle consisting of lanthanide-based down-conversion nanoparticles (DCNPs) and IR786s (DCNP@IR786s) for cell labeling and real-time tracking of ADSC viability in vivo. In dying ADSCs due to excessive ROS generation, absorption competition-induced emission of IR786s was destroyed, which could turn on the NIR-II fluorescent intensity of DCNPs at 1550 nm by 808 nm laser excitation. In contrast, the NIR-II fluorescent intensity of DCNPs was stable at 1550 nm by 980 nm laser excitation. This ratiometric fluorescent signal was precise and sensitive for tracking ADSC viability in vivo. Significantly, the nanoparticle could be applied to quantitively evaluate stem cell viability in real-time in vivo. Using this method, we successfully sought two small molecules including glutathione and dexamethasone that could improve stem cell engraftment efficiency and enhance ADSC therapy in a liver fibrotic mouse model. Therefore, we provide a potential strategy for real-time in vivo quantitative tracking of stem cell viability in ADSC therapy.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Tejido Adiposo , Animales , Supervivencia Celular , Ratones , Imagen Óptica , Células Madre
13.
Anal Chem ; 93(41): 13893-13903, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609146

RESUMEN

NIR-II fluorescent nanoprobes based on inorganic materials, including rare-earth-doped nanoparticles, single-walled carbon nanotubes, CdS quantum dots (QDs), gold nanoclusters, etc., have gained growing interest in bioimaging applications. However, these nanoprobes are usually not biodegradable and lack therapeutic functions. Herein, we developed novel NIR-II fluorescence (FL) imaging and therapeutic nanoprobes based on black phosphorus QDs (BPQDs), which exhibited excellent biodegradability and high tunability of size-dependent optical properties. By adjusting the size of nanoparticles, BPQDs can specifically accumulate in the kidney or liver. Importantly, a low dosage of BPQDs can effectively protect tissues from reactive oxygen species (ROS)-mediated damage in acute kidney and liver injury, which was real-time monitored by responsive NIR-II fluorescence imaging. Overall, we developed novel NIR-II emitting and therapeutic BPQDs with excellent biodegradability vivo, providing a promising candidate for NIR-II FL imaging and ROS scavenging.


Asunto(s)
Nanotubos de Carbono , Puntos Cuánticos , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen Óptica
14.
Angew Chem Int Ed Engl ; 60(38): 20888-20896, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34268865

RESUMEN

The therapeutic efficacy of natural killer (NK) cells-based immunotherapy is greatly related with the survival of transplanted NK cells. However, no effective strategy was reported to monitor NK cell viability in adoptive immunotherapy in vivo. Herein, we develop a ratiometric NIR-II fluorescence imaging strategy to quantitively track and visualize the adoptive NK cell viability in vivo in real-time. The nanoprobe consists of lanthanide-based down-conversion nanoparticles (DCNP) coated with IR786s, a reactive oxygen species (ROS) sensitive to NIR dye, which was directly labeled with NK cells. Upon cell death, the excessive ROS generation occurred within NK cells, along with IR786s degradation, turning on NIR-II fluorescent signal at 1550 nm of DCNP under 808-nm excitation, while the fluorescent signal at 1550 nm of DCNP under 980-nm excitation was stable. Such an intracellular ROS-induced ratiometric NIR-II fluorescent signal was validated to correlate well with NK cell viability in vivo. Using this nanoreporter, we further demonstrated that co-treatment with IL-2, IL-15, and IL-21 could improve NK cell viability in vivo, achieving enhanced immunotherapy for orthotopic hepatocellular carcinoma. Overall, this strategy allows for longitudinal and quantitative tracking of NK cell viability in NK cell-based immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales/citología , Imagen Óptica , Línea Celular Tumoral , Supervivencia Celular/inmunología , Citocinas/inmunología , Humanos , Rayos Infrarrojos , Células Asesinas Naturales/inmunología , Especies Reactivas de Oxígeno/inmunología
15.
Adv Mater ; 33(34): e2102391, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34278624

RESUMEN

Biocompatible nano-antioxidants composed of natural molecules/materials, such as dopamine and melanin, are of great interest for diverse biomedical applications. However, the lack of understanding of the precise structure of these biomaterials and thus the actual dose of effective components impedes their advancement to translation. Herein, a strategy to mimic in situ melanin formation and explore its antioxidative applications is reported, by developing a PEGylated, phenylboronic-acid-protected L-DOPA precursor (PAD) that can self-assemble into well-defined nanoparticles (PADN). Exposure to oxidative species leads to deprotection of phenylboronic acids, transforming PADN to PEG-L-DOPA, which, similar to the biosynthetic pathway of melanin, can be oxidized and polymerized into an antioxidative melanin-like structure. With ultrahigh stability and superior antioxidative activity, the PADN shows remarkable efficacy in prevention and treatment of acute liver injury/failure. Moreover, the in situ structure transformation enables PADN to visualize damaged tissue noninvasively by photoacoustic imaging. Overall, a bioinspired antioxidant with precise structure and site-specific biological activity for theranostics of oxidative stress-related diseases is described.


Asunto(s)
Antioxidantes/química , Fallo Hepático Agudo/diagnóstico por imagen , Fallo Hepático Agudo/terapia , Melaninas/química , Animales , Apoptosis , Peróxido de Hidrógeno/química , Levodopa/química , Hígado , Fallo Hepático Agudo/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Nanopartículas/química , Estrés Oxidativo , Oxígeno/química , Técnicas Fotoacústicas/métodos , Polietilenglicoles/química , Células RAW 264.7 , Especies Reactivas de Oxígeno , Nanomedicina Teranóstica , Resultado del Tratamiento
16.
Small ; 17(26): e2008061, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34081397

RESUMEN

Wilson's disease (WD) is a rare inherited disorder of copper metabolism with pathological copper hyperaccumulation in some vital organs. However, the clinical diagnosis technique of WD is complicated, aggressive, and time-consuming. In this work, a novel ratiometric photoacoustic (PA) imaging nanoprobe in the NIR-II window is developed to achieve noninvasive, rapid, and accurate Cu2+ quantitative detection in vitro and in vivo. The nanoprobe consists of Cu2+ -responsive IR970 dye and a nonresponsive palladium-coated gold nanorod (AuNR-Pd), achieving a concentration-dependent ratiometric PA970 /PA1260 signal change. The urinary Cu2+ content is detectable within minutes down to a detection limit of 76 × 10-9 m. This report acquisition time is several orders of magnitude shorter than those of existing detection approaches requiring complex procedure. Moreover, utilizing the ratiometric PA nanoprobe, PA imaging enables biopsy-free measurement of the liver Cu2+ content and visualization of the liver Cu2+ biodistribution of WD patient, which avoid the body injury during the clinical Cu2+ test using liver biopsy method. The NIR-II ratiometric PA detection method is simple and noninvasive with super precision, celerity, and simplification, which holds great promise as an alternative to liver biopsy for clinical diagnosis of WD.


Asunto(s)
Degeneración Hepatolenticular , Biopsia , Cobre , Oro , Degeneración Hepatolenticular/diagnóstico por imagen , Humanos , Distribución Tisular
17.
Nanoscale ; 13(3): 1813-1822, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33433536

RESUMEN

Adipose tissue-derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to the low hepatic engraftment efficiency of ADSC transplantation. Herein, we propose a strategy based on liver sinusoidal endothelial cell (LSEC)-targeting peptide modification and near infrared (NIR) fluorescent probe labeling for enhancing LSEC-barrier-migration ability and in vivo tracking of ADSCs in a liver injury mouse model. RLTRKRGLK (RK), a LSEC-targeted peptide, and indocyanine green (ICG), a FDA approved infrared fluorescent dye, were simultaneously modified on the ADSC surface via a bioorthogonal click reaction. The equipped ADSCs not only exhibited significant binding ability towards LSEC both in vitro and in vivo, but could also be monitored by NIR imaging in vivo. In particular, the RK-modified ADSCs showed remarkable higher hepatic accumulation as compared to unmodified ADSCs, resulting in better therapeutic outcomes. Therefore, this study provides a simple and convenient method for enhancing the homing of transplanted ADSCs to injured liver accompanying with in vivo cell tracking ability, which may shed light on accelerating the clinical translation of the ADSC-based therapy for liver diseases.


Asunto(s)
Células Madre Mesenquimatosas , Tejido Adiposo , Animales , Rastreo Celular , Células Cultivadas , Química Clic , Hígado , Ratones
18.
Stem Cell Res Ther ; 11(1): 237, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546282

RESUMEN

BACKGROUND: Although it has been preclinically suggested that adipose tissue-derived mesenchymal stem cell (ADSC)-based therapy could effectively treat chronic liver diseases, the hepatic engraftment of ADSCs is still extremely low, which severely limits their long-term efficacy for chronic liver diseases. This study was designed to investigate the impact of antioxidant preconditioning on hepatic engraftment efficiency and therapeutic outcomes of ADSC transplantation in liver fibrotic mice. METHODS: Liver fibrosis model was established by using intraperitoneal injection of carbon tetrachloride (CCl4) in the male C57BL/6 mice. Subsequently, the ADSCs with or without antioxidant pretreatment (including melatonin and reduced glutathione (GSH)) were administrated into fibrotic mice via tail vein injection. Afterwards, the ADSC transplantation efficiency was analyzed by ex vivo imaging, and the liver functions were assessed by biochemical analysis and histopathological examination, respectively. Additionally, a typical hydrogen peroxide (H2O2)-induced cell injury model was applied to mimic the cell oxidative injury to further investigate the protective effects of antioxidant preconditioning on cell migration, proliferation, and apoptosis of ADSCs. RESULTS: Our data showed that antioxidant preconditioning could enhance the therapeutic effects of ADSCs on liver function recovery by reducing the level of AST, ALT, and TBIL, as well as the content of hepatic hydroxyproline and fibrotic area in liver tissues. Particularly, we also found that antioxidant preconditioning could enhance hepatic engraftment efficiency of ADSCs in liver fibrosis model through inhibiting oxidative injury. CONCLUSIONS: Antioxidant preconditioning could effectively improve therapeutic effects of ADSC transplantation for liver fibrosis through enhancing intrahepatic engraftment efficiency by reducing oxidative injuries. These findings might provide a practical strategy for enhancing ADSC transplantation and therapeutic efficiency.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Tejido Adiposo , Animales , Antioxidantes/farmacología , Peróxido de Hidrógeno , Cirrosis Hepática/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
19.
Oncol Lett ; 19(3): 1711-1720, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194663

RESUMEN

The identification of novel and accurate biomarkers is important to improve the prognosis of patients with hepatocellular carcinoma (HCC). C-Type lectin domain family 4 member M (CLEC4M) is involved in the progression of numerous cancer types. However, the clinical significance of CLEC4M in HCC is yet to be elucidated. The aim of the present study is to evaluate the involvement of CLEC4M in HCC progression. The expression level of CLEC4M was determined in tumor, and their corresponding adjacent non-tumor tissues derived from 88 patients with HCC, using immunohistochemistry, western blot and reverse transcription-quantitative PCR. The correlation between CLEC4M expression and certain clinicopathological characteristics was retrospectively analyzed. The results suggested that CLEC4M was specifically labeled in sinusoidal endothelial cells, in both HCC and non-tumor tissues. Moreover, the expression of CLEC4M in tumor tissues was significantly lower than that in non-tumor tissues (P<0.0001), which indicated its potential as a biomarker of the development of HCC. Subsequently, correlation analysis suggested that the relatively higher CLEC4M expression in HCC tissues was significantly associated with increased microvascular invasion (P=0.008), larger tumor size (P=0.018), absence of tumor encapsulation (P<0.0001) and lower tumor differentiation (P=0.019). Notably, patients with high CLEC4M expression levels in their tumor tissues experienced more frequent recurrence and shorter overall survival (OS) times compared with the low-expression group. Furthermore, CLEC4M expression in tumor tissues was identified as an independent and significant risk factor for recurrence-free survival and OS. The results of the present study suggest that CLEC4M may be a valuable biomarker for the prognosis of the patients with HCC, postoperatively.

20.
Oncogenesis ; 8(12): 67, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31732712

RESUMEN

Poor prognosis of hepatocellular carcinoma (HCC) patients is frequently associated with rapid tumor growth, recurrence and drug resistance. MT1G is a low-molecular weight protein with high affinity for zinc ions. In the present study, we investigated the expression of MT1G, analyzed clinical significance of MT1G, and we observed the effects of MT1G overexpression on proliferation and apoptosis of HCC cell lines in vitro and in vivo. Our results revealed that MT1G was significantly downregulated in tumor tissues, and could inhibit the proliferation as well as enhance the apoptosis of HCC cells. The mechanism study suggested that MT1G increased the stability of p53 by inhibiting the expression of its ubiquitination factor, MDM2. Furthermore, MT1G also could enhance the transcriptional activity of p53 through direct interacting with p53 and providing appropriate zinc ions to p53. The modulation of MT1G on p53 resulted in upregulation of p21 and Bax, which leads cell cycle arrest and apoptosis, respectively. Our in vivo assay further confirmed that MT1G could suppress HCC tumor growth in nude mice. Overall, this is the first report on the interaction between MT1G and p53, and adequately uncover a new HCC suppressor which might have therapeutic values by diminishing the aggressiveness of HCC cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA