Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 52(16): 9574-9585, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39016170

RESUMEN

The endonuclease activity of Pms1 directs mismatch repair by generating a nick in the newly replicated DNA strand. Inactivating Pms2, the human homologue of yeast Pms1, increases the chances of colorectal and uterine cancers. Here we use whole genome sequencing to show that loss of this endonuclease activity, via the pms1-DE variant, results in strong mutator effects throughout the Saccharomyces cerevisiae genome. Mutation rates are strongly increased for mutations resulting from all types of single-base substitutions and for a wide variety of single- and multi-base indel mutations. Rates for these events are further increased in strains combining pms1-DE with mutator variants of each of the three major leading and lagging strand replicases. In all cases, mutation rates, spectra, biases, and context preferences are statistically indistinguishable from strains with equivalent polymerases but lacking initial mismatch recognition due to deletion of MSH2. This implies that, across the nuclear genome, strand discrimination via the Pms1 endonuclease is as important for MMR as is initial mismatch recognition by Msh2 heterodimers.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Genoma Fúngico , Inestabilidad Genómica/genética , Tasa de Mutación , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mutación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Secuenciación Completa del Genoma , Proteínas MutL
2.
Nucleic Acids Res ; 47(9): 4597-4611, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30838410

RESUMEN

Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the 'Tus/Ter' system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.


Asunto(s)
ARN Helicasas DEAD-box/genética , Replicación del ADN/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Recombinación Homóloga/genética , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 45(16): 9427-9440, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934474

RESUMEN

DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Polimerasa III/metabolismo , Mutación , Metilación de ADN/efectos de los fármacos , ADN Polimerasa III/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacología
4.
Proc Natl Acad Sci U S A ; 114(36): 9665-9670, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827358

RESUMEN

Proliferating cells acquire genome alterations during the act of DNA replication. This leads to mutation accumulation and somatic cell mosaicism in multicellular organisms, and is also implicated as an underlying cause of aging and tumorigenesis. The molecular mechanisms of DNA replication-associated genome rearrangements are poorly understood, largely due to methodological difficulties in analyzing specific replication forks in vivo. To provide an insight into this process, we analyzed the mutagenic consequences of replication fork stalling at a single, site-specific replication barrier (the Escherichia coli Tus/Ter complex) engineered into the yeast genome. We demonstrate that transient stalling at this barrier induces a distinct pattern of genome rearrangements in the newly replicated region behind the stalled fork, which primarily consist of localized losses and duplications of DNA sequences. These genetic alterations arise through the aberrant repair of a single-stranded DNA gap, in a process that is dependent on Exo1- and Shu1-dependent homologous recombination repair (HRR). Furthermore, aberrant processing of HRR intermediates, and elevated HRR-associated mutagenesis, is detectable in a yeast model of the human cancer predisposition disorder, Bloom's syndrome. Our data reveal a mechanism by which cellular responses to stalled replication forks can actively generate genomic alterations and genetic diversity in normal proliferating cells.


Asunto(s)
Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genes Reporteros , Ingeniería Genética , Humanos , Modelos Biológicos , Mutagénesis , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparación del ADN por Recombinación , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
DNA Repair (Amst) ; 31: 41-51, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25996407

RESUMEN

Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Saccharomyces cerevisiae/genética , Disparidad de Par Base , Secuencia de Bases , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
DNA Repair (Amst) ; 12(2): 92-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23245696

RESUMEN

The Saccharomyces cerevisiae EXO1 gene encodes a 5' exonuclease that participates in mismatch repair (MMR) of DNA replication errors. Deleting EXO1 was previously shown to increase mutation rates to a greater extent when combined with a mutator variant (pol3-L612M) of the lagging strand replicase, DNA polymerase δ (Pol δ), than when combined with a mutator variant (pol2-M644G) of the leading strand replicase, DNA polymerase ɛ (Pol ɛ). Here we confirm that result, and extend the approach to examine the effect of deleting EXO1 in a mutator variant (pol1-L868M) of Pol α, the proofreading-deficient and least accurate of the three nuclear replicases that is responsible for initiating Okazaki fragment synthesis. We find that deleting EXO1 increases the mutation rate in the Pol α mutator strain to a significantly greater extent than in the Pol δ or Pol ɛ mutator strains, thereby preferentially reducing the efficiency of MMR of replication errors generated by Pol α. Because these mismatches are closer to the 5' ends of Okazaki fragments than are mismatches made by Pol δ or Pol ɛ, the results not only support the previous suggestion that Exo1 preferentially excises lagging strand replication errors during mismatch repair, they further imply that the 5' ends serve as entry points for 5' excision of replication errors made by Pol α, and possibly as strand discrimination signals for MMR. Nonetheless, mutation rates in the Pol α mutator strain are 5- to 25-fold lower in an exo1Δ strain as compared to an msh2Δ strain completely lacking MMR, indicating that in the absence of Exo1, most replication errors made by Pol α can still be removed in an Msh2-dependent manner by other nucleases and/or by strand displacement.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Polimerasa I/metabolismo , ADN de Hongos/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Disparidad de Par Base , Secuencia de Bases , ADN/biosíntesis , ADN Polimerasa I/genética , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Exodesoxirribonucleasas/genética , Eliminación de Gen , Datos de Secuencia Molecular , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Tasa de Mutación , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
7.
DNA Repair (Amst) ; 10(1): 73-86, 2011 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-20970388

RESUMEN

Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación de la Incompatibilidad de ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN/fisiología , Exodesoxirribonucleasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , ADN/genética , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/efectos de la radiación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/efectos de la radiación , Células HeLa , Humanos , Rayos Láser/efectos adversos , Ratones , Homólogo 1 de la Proteína MutL , Proteína 3 Homóloga de MutS , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/efectos de la radiación , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/efectos de la radiación , Fase S , Helicasa del Síndrome de Werner
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA