RESUMEN
Plastics are a cornerstone of the modern world, yet the durable material properties that we have come to depend upon have made them recalcitrant environmental pollutants. Biological solutions in the form of engineered enzymes offer low energy and sustainable approaches to recycle and upcycle plastic waste, uncoupling their production and end of life from fossil fuels and greenhouse gases. These enzymes however, encounter immense challenges acting on plastics: facing hydrophobic surfaces, molecular crowding, and high levels of substrate heterogeneity. There have been mixed reports about the benefits of fusing partner domains to polyethylene terephthalate (PET) degrading enzymes, with moderate improvements identified under specific conditions, but no clarity into the factors that underlie the mechanisms. Here, we use the SpyCatcher003:SpyTag003 technology, which demonstrates a profound 47 °C shift in Tm upon irreversible complex formation, to investigate the influence of the thermal stability of the fusion partner on a range of PETases selected for their optimal reaction temperatures. We find that the thermal stability of the fusion partner does not have a positive correlation on the activity of the enzymes or their evident kinetic and thermal stabilities. Instead, it appears that the fusion to less stable SpyCatcher003 tends to increase the measured activation energy of unfolding compared to the more stable complex and wildtype enzymes. Despite this, the fusions to SpyCatcher003 do not show significantly better catalytic activity on PET films, with or without SpyTag003, and were found to be sometimes disruptive. The approach we highlight here, in using a fusion partner with controllable melting temperature, allowed us to dissect the impact of the stability of a fusion partner on enzyme properties. Although fusion stability did not appear to be coupled with identifiable trends in enzymatic activities, careful analysis of the unfolding pathways, and solid and solution activities of a wider range of enzymes may yield a more detailed understanding.
Asunto(s)
Estabilidad de Enzimas , Tereftalatos Polietilenos , Termodinámica , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Cinética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genéticaRESUMEN
Enzyme-based depolymerization is a viable approach for recycling of poly(ethylene terephthalate) (PET). PETase from Ideonella sakaiensis (IsPETase) is capable of PET hydrolysis under mild conditions but suffers from concentration-dependent inhibition. In this study, this inhibition is found to be dependent on incubation time, the solution conditions, and PET surface area. Furthermore, this inhibition is evident in other mesophilic PET-degrading enzymes to varying degrees, independent of the level of PET depolymerization activity. The inhibition has no clear structural basis, but moderately thermostable IsPETase variants exhibit reduced inhibition, and the property is completely absent in the highly thermostable HotPETase, previously engineered by directed evolution, which simulations suggest results from reduced flexibility around the active site. This work highlights a limitation in applying natural mesophilic hydrolases for PET hydrolysis and reveals an unexpected positive outcome of engineering these enzymes for enhanced thermostability.
Asunto(s)
Ácidos Ftálicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Hidrolasas , Ácidos Ftálicos/química , EtilenosRESUMEN
The promise of biologic therapeutics is hindered by the challenge to deliver their activity to biochemically relevant sites within diseased cells. The favourable application of the natural protein carriers of the AB5 toxin family to this challenge has been restricted owing to still unresolved requirements for assembling non-native cargo into carrier complexes. Here, we clarify the properties of fusion peptides which allow co-assembly of a selected fluorescent protein cargo with the non-toxic B subunit of a heat-labile enterotoxin. We establish the influence of sequence length, sequence identity and secondary structure of these linking domains on the assembly and disassembly of the complexes. Through our engineering framework we identify several non-native, reduced length fusion sequences that robustly assemble with the native carriers, maintain their ability to deliver protein cargo to cells, and demonstrate substantially refined in vitro properties. Constructs based upon these sequences should prove directly applicable to a variety of protein delivery challenges, and the described design framework should find immediate application to other members of the AB5 protein carrier family.
Asunto(s)
Toxinas Bacterianas/metabolismo , Ingeniería de Proteínas/métodos , Toxinas Bacterianas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de ProteínaRESUMEN
The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal-tetrapyrrole cofactors, creating a 100â µs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.
Asunto(s)
Aminoácidos/química , Luz , Naftoquinonas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Aminoácidos/síntesis química , Transporte de Electrón/efectos de la radiación , Inteínas , Modelos Moleculares , Estructura Molecular , Naftoquinonas/síntesis química , Procesos Fotoquímicos/efectos de la radiaciónRESUMEN
The successful use of man-made proteins to advance synthetic biology requires both the fabrication of functional artificial proteins in a living environment, and the ability of these proteins to interact productively with other proteins and substrates in that environment. Proteins made by the maquette method integrate sophisticated oxidoreductase function into evolutionarily naive, non-computationally designed protein constructs with sequences that are entirely unrelated to any natural protein. Nevertheless, we show here that we can efficiently interface with the natural cellular machinery that covalently incorporates heme into natural cytochromes c to produce in vivo an artificial c-type cytochrome maquette. Furthermore, this c-type cytochrome maquette is designed with a displaceable histidine heme ligand that opens to allow functional oxygen binding, the primary event in more sophisticated functions ranging from oxygen storage and transport to catalytic hydroxylation. To exploit the range of functions that comes from the freedom to bind a variety of redox cofactors within a single maquette framework, this c-type cytochrome maquette is designed with a second, non-heme C, tetrapyrrole binding site, enabling the construction of an elementary electron transport chain, and when the heme C iron is replaced with zinc to create a Zn porphyrin, a light-activatable artificial redox protein. The work we describe here represents a major advance in de novo protein design, offering a robust platform for new c-type heme based oxidoreductase designs and an equally important proof-of-principle that cofactor-equipped man-made proteins can be expressed in living cells, paving the way for constructing functionally useful man-made proteins in vivo.
RESUMEN
Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-α-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications.
Asunto(s)
Oxidorreductasas/metabolismo , Proteínas/química , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidorreductasas/química , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodosRESUMEN
The study of natural enzymes is complicated by the fact that only the most recent evolutionary progression can be observed. In particular, natural oxidoreductases stand out as profoundly complex proteins in which the molecular roots of function, structure and biological integration are collectively intertwined and individually obscured. In the present paper, we describe our experimental approach that removes many of these often bewildering complexities to identify in simple terms the necessary and sufficient requirements for oxidoreductase function. Ours is a synthetic biology approach that focuses on from-scratch construction of protein maquettes designed principally to promote or suppress biologically relevant oxidations and reductions. The approach avoids mimicry and divorces the commonly made and almost certainly false ascription of atomistically detailed functionally unique roles to a particular protein primary sequence, to gain a new freedom to explore protein-based enzyme function. Maquette design and construction methods make use of iterative steps, retraceable when necessary, to successfully develop a protein family of sturdy and versatile single-chain three- and four-α-helical structural platforms readily expressible in bacteria. Internally, they prove malleable enough to incorporate in prescribed positions most natural redox cofactors and many more simplified synthetic analogues. External polarity, charge-patterning and chemical linkers direct maquettes to functional assembly in membranes, on nanostructured titania, and to organize on selected planar surfaces and materials. These protein maquettes engage in light harvesting and energy transfer, in photochemical charge separation and electron transfer, in stable dioxygen binding and in simple oxidative chemistry that is the basis of multi-electron oxidative and reductive catalysis.
Asunto(s)
Oxidorreductasas/síntesis química , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/síntesis química , Biología Sintética/métodos , Oxidación-Reducción , Oxidorreductasas/química , Proteínas Recombinantes/químicaRESUMEN
As a prelude to engineering artificial energy conversion proteins emulating biology, we examine the inclusion of a synthetic naphthoquinone amino acid in a characterized host-guest protein and determine the effects of its quinone and hydroquinone forms on the helix-coil distribution.
Asunto(s)
Naftoquinonas/química , Secuencia de Aminoácidos , Aminoácidos/química , Dicroismo Circular , Técnicas Electroquímicas , Datos de Secuencia Molecular , Oxidación-Reducción , Péptidos/química , TermodinámicaRESUMEN
Safranines hold great promise as artificial flavin-like electron transfer cofactors with tunable properties. We report the design and chemical synthesis of the p-methoxy derivative of safranine O using a new synthetic route based on the Ulmann condensation. Spectroelectrochemical comparison of the purified parent safranine and this derivative demonstrates that the modification increases its two-electron reduction potential by 125 mV, or 5.75 kcal/mol. This modification also causes redshifts in the absorbance and fluorescence spectra of the cofactor, suggesting that it may find future utility in arrayed sensor applications.
RESUMEN
The synthesis of a naphthoquinone amino acid and its electrochemical characterization in a peptide is presented.
Asunto(s)
Aminoácidos/química , Aminoácidos/síntesis química , Naftoquinonas/química , Naftoquinonas/síntesis química , Péptidos/química , Protones , Electroquímica , Transporte de Electrón , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Oxidación-Reducción , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
We report a simple, single step reaction that transforms riboflavin, which is insoluble in benzene, to tetraphenylacetyl riboflavin (TPARF), which is soluble in this solvent to over 250 mM. Electrochemical analysis of TPARF both alone and in complexes with two benzene-soluble flavin receptors: dibenzylamidopyridine (DBAP) and monobenzylamidopyridine (MBAP), prove that this model system behaves similarly to other previously studied flavin model systems which were soluble only in more polar solvents such as dichloromethane. Binding titrations in both benzene and dichloromethane show that the association constants of TPARF with its ligands are over an order of magnitude higher in benzene than dichloromethane, a consequence of the fact that benzene does not compete for H-bonds, but dichloromethane does. The alteration induced in the visible spectrum of TPARF in benzene upon the addition of DBAP is very similar to the difference produced by transfer to dichloromethane, further indicating that the flavin head group engages in a similar degree of hydrogen bonding with dichloromethane as with its ligands. This work underlines the importance of using a truly nonpolar solvent for the analysis of the effects of hydrogen bonding on the energetics of any biomimetic host-guest model system.
Asunto(s)
Flavinas/química , Enlace de Hidrógeno , Solventes/química , Oxidación-ReducciónRESUMEN
[FeFe] hydrogenases catalyze reversible hydrogen oxidation at an unusual organometallic active site. Neither enzymatic studies nor synthesis of small molecule models has managed to elucidate the mechanisms of these enzymes. In this paper, we demonstrate the incorporation of an iron carbonyl thiolate mimic of the hydrogenase active site into a de novo artificial peptide, creating the first peptide-based model system for hydrogenases.
Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , Metaloproteínas/química , Péptidos/química , Péptidos/metabolismo , Sitios de Unión , Dicroismo Circular , Cisteína/química , Cisteína/metabolismo , Ligandos , Estructura Molecular , EspectrofotometríaRESUMEN
We report the synthesis and initial electrochemical characterization of a benzene-soluble flavin analogue: N(10)-2,2-dibenzylethyl-7,8-dimethylisoalloxazine (DBF, 1). This analogue, which has an unmodified flavin headgroup, is intended for use in the spectroscopic examination of the electronic effects of flavin hydrogen bonding in simple model systems in aprotic, non-hydrogen bonding solvents. With future spectroscopic studies in mind, we have developed a synthetic route which allows the incorporation of isotopic labels using inexpensive starting materials.
RESUMEN
[reaction: see text] Enantiopure (1Z,3E)-1-sulfinyl dienes bearing an o-dithianylphenyl group can be prepared and complexed with (bda)Fe(CO)(3) to afford the corresponding sulfinyl diene iron(0) tricarbonyl complexes. This diastereoselective complexation introduces planar and axial chirality simultaneously, with a high degree of facial selectivity as well as atropselectivity. Dynamic kinetic resolution is likely to be the origin of the atropselectivity.