RESUMEN
BACKGROUND: Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS: We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS: The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS: Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.
RESUMEN
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
Asunto(s)
Ceramidas , Laboratorios , Estándares de Referencia , Humanos , Ceramidas/sangre , Calibración , Laboratorios/normas , Espectrometría de Masas/métodos , Lipidómica/métodos , Reproducibilidad de los ResultadosRESUMEN
Cold-induced lipolysis is widely studied as a potential therapeutic strategy to combat metabolic disease, but its effect on lipid homeostasis in humans remains largely unclear. Blood plasma comprises an enormous repertoire in lipids allowing insights into whole body lipid homeostasis. So far, reported results originate from studies carried out with small numbers of male participants. Here, the blood plasma's lipidome of 78 male and 93 female volunteers, who were exposed to cold below the shivering threshold for 2 h, was quantified by comprehensive lipidomics using high-resolution mass spectrometry. Short-term cold exposure increased the concentrations in 147 of 177 quantified circulating lipids and the response of the plasma's lipidome was sex-specific. In particular, the amounts of generated glycerophospholipid and sphingolipid species differed between the sexes. In women, the BMI could be related with the lipidome's response. A logistic regression model predicted with high sensitivity and specificity whether plasma samples were from male or female subjects based on the cold-induced response of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) species. In summary, cold exposure promotes lipid synthesis by supplying fatty acids generated after lipolysis for all lipid classes. The plasma lipidome, i.e. PC, LPC and SM, shows a sex-specific response, indicating a different regulation of its metabolism in men and women. This supports the need for sex-specific research and avoidance of sex bias in clinical trials.
RESUMEN
Bile acids (BA) are supposed to cause metabolic alterations after bariatric surgery (BS). Here we report the longitudinal dynamics of the human BA metabolome by LC-MS/MS after BS versus low calory diet (LCD) in two obesity cohorts over 12 months. Rapid and persistent oscillations of 23 BA subspecies could be identified with highly specific patterns in BS vs. LCD. TCDCA, GLCA, and TLCA represent most promising candidates for drug development.
Asunto(s)
Ácidos y Sales Biliares , Metaboloma , Obesidad , Pérdida de Peso , Humanos , Ácidos y Sales Biliares/metabolismo , Masculino , Femenino , Obesidad/metabolismo , Cirugía Bariátrica , Adulto , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Cromatografía LiquidaRESUMEN
Critical illness causes disturbances in lipid metabolism. Here, we investigated the levels of apolipoprotein A-IV (apoA-IV), a regulator of triglyceride and cholesterol metabolism, in human sepsis. ApoA-IV (analyzed in 156 patients with systemic inflammatory response syndrome (SIRS)/sepsis) and cholesteryl ester (CE) (analyzed in 121 of these patients) were lower in patients compared to 43 healthy controls. In contrast, triglyceride (TG) levels were elevated in patients. ApoA-IV levels in plasma of the patients did not correlate with these lipids. Patients with SIRS, sepsis or septic shock had comparable apoA-IV, TG, CE and free cholesterol (FC) levels. Patients on dialysis had significantly lower CE levels, whereas apoA-IV levels did not change much. CE levels were elevated in patients with viral sepsis due to SARS-CoV-2 infection in comparison to SIRS/sepsis patients not infected by this virus. CE levels correlated negatively with procalcitonin, interleukin-6 and bilirubin, while TGs were positively associated with bilirubin and C-reactive protein. ApoA-IV, TG, CE and FC levels were not associated with bacterial infection or survival. In conclusion, this analysis suggests that CE levels decline in sepsis-related renal failure and also shows that plasma apoA-IV and CE levels are early biomarkers of sepsis.
RESUMEN
Inflammatory bowel disease (IBD) triggers chronic intestinal inflammation and is linked to primary sclerosing cholangitis (PSC). Cholesterol homeostasis, tightly regulated under normal conditions, becomes disrupted in both inflammation and chronic liver disease. We analyzed fecal and serum levels of cholesterol synthesis precursors, oxysterols, and phytosterols in 87 patients with IBD (81 for serum analysis) including patients with Crohn's disease (CD) and ulcerative colitis (UC), 11 patients with PSC, 21 patients with PSC-IBD (18 for serum analysis), and 16 healthy controls (17 for serum analysis). Cholesterol was analysed by flow injection analysis on a high-resolution hybrid quadrupole-Orbitrap mass spectrometer and further serum sterols and all fecal sterols were analysed by a gas chromatograph mass spectrometer. Serum levels of lanosterol, 7-dehydrocholesterol, 7-beta-hydroxycholesterol, 27-hydroxycholesterol, and the plant sterols campesterol, stigmasterol, and sitosterol were similar across control and patient groups. Notably, serum lathosterol was elevated in CD patients compared to those with UC, PSC, PSC-IBD, and healthy controls. All other serum and fecal sterols showed no differences between CD and UC. Cholesterol synthesis precursors in serum, serum cholesterol levels, and both serum and fecal plant sterol levels decreased with increasing IBD severity. Consequently, serum cholesterol, campesterol, sitosterol, and fecal 5-beta sitostanol and 5-alpha sitostanol were negatively correlated with C-reactive protein and fecal calprotectin. The conversion of cholesterol to coprostanol in feces was impaired in IBD, PSC, and PSC-IBD, independent of bowel inflammation severity or liver disease extent. Patients with PSC, and to a lesser extent PSC-IBD, had elevated serum plant sterol levels, positively correlating with liver disease markers. In conclusion, in patients with IBD, cholesterol biosynthetic precursors, serum cholesterol levels, and fecal plant sterols decrease with intestinal inflammation. An inverse association of serum plant sterols with intestinal inflammation was observed in patients with IBD and a direct association of serum phytosterols with liver injury in patients with PSC. The conversion of fecal cholesterol to coprostanol was impaired in all patient cohorts. IBD and PSC alter serum sterol levels differently, whereas changes in fecal sterols are not disease specific and are moderate.
RESUMEN
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
RESUMEN
Clostridioides difficile infection (CDI) causes alterations in the intestinal microbiota, frequently associated with changes in the gut metabolism of bile acids and cholesterol. In addition to the impact on microbiome composition and given the metabolic changes occurring during CDI, our work focuses on the importance to know the effects at the local and systemic levels, both during the infection and its treatment, by paying particular attention to plasma lipid metabolism due to its relationship with CDI pathogenesis. Specific changes, characterized by a loss of microbial richness and diversity and related to a reduction in short-chain acid-producing bacteria and an increase in bile salt hydrolase-producing bacteria, were observed in the gut microbiota of CDI patients, especially in those suffering from recurrent CDI (RCDI). However, gut microbiota showed its ability to restore itself after treatment, resembling healthy individuals, in those patients treated by fecal microbiome transfer (FMT), in contrast with those treated with antibiotics, and displaying increased levels of Eubacterium coprostanoligenes, a cholesterol-reducing anaerobe. Interestingly, changes in plasma lipidome revealed a global depletion in circulating lipids in CDI, with the largest impact on cholesteryl esters. CDI patients also showed a specific and consistent decrease in the levels of lipid species containing linoleic acid-an essential fatty acid-which were only partially recovered after antibiotic treatment. Analysis of the plasma lipidome reflects CDI impact on the gut microbiota and its metabolism, evidencing changes in sterol and fatty acid metabolism that are possibly related to specific alterations observed in gut microbial communities of CDI patients. IMPORTANCE: There is increasing evidence about the influence the changes in microbiota and its metabolism has on numerous diseases and infections such as Clostridioides difficile infection (CDI). The knowledge of these changes at local and systemic levels can help us manage this infection to avoid recurrences and apply the best therapies, such as fecal microbiota transfer (FMT). This study shows a better restoration of the gut in FMT-treated patients than in antibiotic-treated patients, resembling healthy controls and showing increased levels of cholesterol-reducing bacteria. Furthermore, it evidences the CDI impact on plasma lipidome. We observed in CDI patients a global depletion in circulating lipids, particularly cholesteryl esters, and a specific decrease in linoleic acid-containing lipids, an essential fatty acid. Our observations could impact CDI management because the lipid content was only partially recovered after treatment, suggesting that continued nutritional support, aiming to restore healthy lipid levels, could be essential for a full recovery.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Esteroles , Humanos , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/sangre , Infecciones por Clostridium/terapia , Esteroles/metabolismo , Esteroles/sangre , Clostridioides difficile/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Masculino , Lipidómica , Femenino , Persona de Mediana Edad , Anciano , Heces/microbiología , Lípidos/sangre , Adulto , Trasplante de Microbiota FecalRESUMEN
The rapid increase in lipidomic studies has led to a collaborative effort within the community to establish standards and criteria for producing, documenting, and disseminating data. Creating a dynamic easy-to-use checklist that condenses key information about lipidomic experiments into common terminology will enhance the field's consistency, comparability, and repeatability. Here, we describe the structure and rationale of the established Lipidomics Minimal Reporting Checklist to increase transparency in lipidomics research.
Asunto(s)
Lista de Verificación , Lipidómica , Lipidómica/métodos , Lipidómica/normas , Humanos , Lípidos/análisis , Lípidos/químicaRESUMEN
Phosphatidylcholine (PC) is an essential lipid for liver health and lipoprotein metabolism, but its circulating levels have rarely been studied in patients with cirrhosis. Chronic hepatitis C virus (HCV) infection causes lipid abnormalities and is a major cause of cirrhosis. Effective HCV elimination with direct-acting antivirals (DAAs) is associated with the normalization of serum low-density lipoprotein cholesterol levels. Since PC is abundant in all lipoprotein particles, this study analyzed the association between serum PC species levels and liver cirrhosis before and after HCV eradication. Therefore, 27 PC species were measured by Fourier Transform Mass Spectrometry in the serum of 178 patients with chronic HCV infection at baseline and in 176 of these patients at the end of therapy. The PC species did not correlate with viral load, and the levels of 13 PC species were reduced in patients infected with genotype 3a compared to those affected with genotype 1. Four PC species were slightly elevated 12 weeks after DAA initiation, and genotype-related changes were largely normalized. Patients with HCV and cirrhosis had higher serum levels of PC 30:0 and 32:0 before and at the end of therapy. PC species containing polyunsaturated fatty acids were mostly decreased in cirrhosis. The levels of polyunsaturated, but not saturated, PC species were inversely correlated with the model of the end-stage liver disease score. A receiver operating characteristic curve analysis showed area under the curve values of 0.814 and 0.826 for PC 32:0 and 0.917 and 0.914 for % PC 32:0 (relative to the total PC levels) for the classification of cirrhosis at baseline and at the end of therapy, respectively. In conclusion, the specific upregulation of PC 32:0 in cirrhosis before and after therapy may be of diagnostic value in HCV-related cirrhosis.
Asunto(s)
Biomarcadores , Hepacivirus , Hepatitis C Crónica , Cirrosis Hepática , Fosfatidilcolinas , Humanos , Fosfatidilcolinas/sangre , Cirrosis Hepática/sangre , Cirrosis Hepática/virología , Cirrosis Hepática/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Hepacivirus/genética , Hepatitis C Crónica/sangre , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Antivirales/uso terapéutico , Anciano , Adulto , Carga Viral , Curva ROC , GenotipoRESUMEN
The (patho)physiological function of the sphingolipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) in articular joints during osteoarthritis (OA) is largely unknown. Therefore, we investigated the influence of these lipids on protein expression by fibroblast-like synoviocytes (FLSs) from OA knees. Cultured human FLSs (n = 7) were treated with 1 of 3 lipid species-C1P, S1P, or SPC-IL-1ß, or with vehicle. The expression of individual proteins was determined by tandem mass tag peptide labeling followed by high-resolution electrospray ionization (ESI) mass spectrometry after liquid chromatographic separation (LC-MS/MS/MS). The mRNA levels of selected proteins were analyzed using RT-PCR. The 3sphingolipids were quantified in the SF of 18 OA patients using LC-MS/MS. A total of 4930 proteins were determined using multiplex MS, of which 136, 9, 1, and 0 were regulated both reproducibly and significantly by IL-1ß, C1P, S1P, and SPC, respectively. In the presence of IL-1ß, all 3 sphingolipids exerted ancillary effects. Only low SF levels of C1P and SPC were found. In conclusion, the 3 lipid species regulated proteins that have not been described in OA. Our results indicate that charged multivesicular body protein 1b, metal cation symporter ZIP14, glutamine-fructose-6-P transaminase, metallothionein-1F and -2A, ferritin, and prosaposin are particularly interesting proteins due to their potential to affect inflammatory, anabolic, catabolic, and apoptotic mechanisms.
Asunto(s)
Ceramidas , Fibroblastos , Lisofosfolípidos , Proteómica , Esfingosina , Sinoviocitos , Humanos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteómica/métodos , Fibroblastos/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Femenino , Células Cultivadas , Masculino , Anciano , Interleucina-1beta/metabolismo , Espectrometría de Masas en Tándem , Persona de Mediana Edad , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/genética , Fosforilcolina/análogos & derivadosRESUMEN
Increasing energy expenditure in brown adipose (BAT) tissue by cold-induced lipolysis is discussed as a potential strategy to counteract imbalanced lipid homeostasis caused through unhealthy lifestyle and cardiometabolic disease. Yet, it is largely unclear how liberated fatty acids (FA) are metabolized. We investigated the liver and BAT lipidome of mice housed for 1 week at thermoneutrality, 23 °C and 4 °C using quantitative mass spectrometry-based lipidomics. Housing at temperatures below thermoneutrality triggered the generation of phosphatidylethanolamine (PE) in both tissues. Particularly, the concentrations of PE containing polyunsaturated fatty acids (PUFA) in their acyl chains like PE 18:0_20:4 were increased at cold. Investigation of the plasma's FA profile using gas chromatography coupled to mass spectrometry revealed a negative correlation of PUFA with unsaturated PE in liver and BAT indicating a flux of FA from the circulation into these tissues. Beta-adrenergic stimulation elevated intracellular levels of PE 38:4 and PE 40:6 in beige wildtype adipocytes, but not in adipose triglyceride lipase (ATGL)-deficient cells. These results imply an induction of PE synthesis in liver, BAT and thermogenic adipocytes after activation of the beta-adrenergic signaling cascade.
RESUMEN
SARS-CoV-2 infection was shown to induce proprotein convertase subtilisin/kexin type 9 (PCSK9) plasma levels in sepsis. Here, we investigate the association between serum PCSK9 levels and disease severity. PCSK9 was measured in serum of 55 controls, 40 patients with moderate and 60 patients with severe COVID-19 disease. Serum PCSK9 was elevated in moderate COVID-19 compared to controls and further increased in severe cases. PCSK9 levels were not associated with C-reactive protein, bacterial superinfections, interventions, or survival in patients with severe COVID-19. PCSK9 regulates circulating cholesterol levels, and 15 cholesteryl ester (CE) species and free cholesterol (FC) were quantified by direct flow injection analysis using a high-resolution hybrid quadrupole-Orbitrap mass spectrometer. Most CE species with shorter fatty acid chains were decreased in severe compared to moderate COVID-19, and none of the CE species were correlated with PCSK9 in patients with severe COVID-19. Levels of all CE species negatively correlated with C-reactive protein in severe COVID-19 patients. Notably, FC was induced in severe compared to moderate COVID-19. The FC/CE ratio correlated positively with inflammatory markers and was associated with non-survival. The current study suggests that the imbalance between CE and FC levels is associated with disease severity and mortality in patients with COVID-19.
RESUMEN
Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.
Asunto(s)
Tejido Adiposo Pardo , Colesterol , Lipidómica , Mitocondrias , Proteína Desacopladora 1 , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Ratones , Tejido Adiposo Pardo/metabolismo , Colesterol/metabolismo , Mitocondrias/metabolismo , Lipidómica/métodos , Especificidad de Órganos , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Glicerofosfolípidos/metabolismo , Masculino , Metabolismo de los LípidosRESUMEN
Fatty acid transport protein (FATP)4 was thought to mediate intestinal lipid absorption, which was disputed by a study using keratinocyte-Fatp4-rescued Fatp4-/- mice. These knockouts when fed with a Western diet showed elevated intestinal triglyceride (TG) and fatty acid levels. To investigate a possible role of FATP4 on intestinal lipid processing, ent-Fatp4 (KO) mice were generated by Villin-Cre-specific inactivation of the Fatp4 gene. We aimed to measure circulating and intestinal lipids in control and KO mice after acute or chronic fat intake or during aging. Remarkably, ent-Fatp4 mice displayed an approximately 30% decrease in ileal behenic, lignoceric, and nervonic acids, ceramides containing these FA, as well as, ileal sphingomyelin, phosphatidylcholine, and phosphatidylinositol levels. Such decreases were concomitant with an increase in jejunal cholesterol ester. After a 2-wk recovery from high lipid overload by tyloxapol and oral-lipid treatment, ent-Fatp4 mice showed an increase in plasma TG and chylomicrons. Upon overnight fasting followed by an oral fat meal, ent-Fatp4 mice showed an increase in plasma TG-rich lipoproteins and the particle number of chylomicrons and very low-density lipoproteins. During aging or after feeding with a high-fat high-cholesterol (HFHC) diet, ent-Fatp4 mice showed an increase in plasma TG, fatty acids, glycerol, and lipoproteins as well as intestinal lipids. HFHC-fed KO mice displayed an increase in body weight, the number of lipid droplets with larger sizes in the ileum, concomitant with a decrease in ileal ceramides and phosphatidylcholine. Thus, enterocyte FATP4 deficiency led to a metabolic shift from polar to neutral lipids in distal intestine rendering an increase in plasma lipids and lipoproteins.NEW & NOTEWORTHY Enterocyte-specific Fatp4 deficiency in mice increased intestinal lipid absorption with elevation of blood lipids during fasting and aging, as well as after an acute oral fat-loading or chronic HFHC feeding. Lipidomics revealed that knockout mice displayed a shift from very long-chain to long-chain fatty acids, and from polar to neutral lipids, predominantly in the ileum. Thus, FATP4 may have a physiological function in the control of blood lipids via metabolic shifts in distal intestine.
Asunto(s)
Enterocitos , Proteínas de Transporte de Ácidos Grasos , Metabolismo de los Lípidos , Ratones Noqueados , Animales , Ratones , Enterocitos/metabolismo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Absorción Intestinal , Triglicéridos/metabolismo , Triglicéridos/sangre , Masculino , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Lípidos/sangre , Dieta Alta en Grasa , Íleon/metabolismoRESUMEN
The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Lipidómica , Cromatografía de Gases y Espectrometría de Masas/métodos , Lipidómica/métodos , Lípidos/análisis , Lípidos/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Lino/química , Verduras/química , Espectrometría de Masas/métodos , Triglicéridos/análisis , Triglicéridos/químicaRESUMEN
Soluble CD163 (sCD163) is a selective marker of macrophages whose circulating levels have been found to be induced in patients with active inflammatory bowel disease (IBD). Urinary proteins are emerging as non-invasive diagnostic biomarkers, and here, sCD163 levels were measured in the urine of 18 controls and 63 patients with IBD by enzyme-linked immunosorbent assay. Urinary sCD163 levels did, however, not differentiate IBD patients from controls. Analysis of sCD163 in the serum of 51 of these patients did not show higher levels in IBD. Primary sclerosing cholangitis (PSC) is often associated with IBD, and sCD163 was higher in the urine of the 21 patients and in the serum of the 13 patients with PSC compared to patients with IBD. Of clinical relevance, urinary sCD163 levels were higher in PSC patients compared to those with other chronic liver diseases (n = 16), while serum sCD163 levels were comparable between the two groups. Serum sCD163 of IBD and PSC patients positively correlated with serum C-reactive protein. Serum creatinine and glomerular filtration rate, surrogate markers for renal function, did not significantly correlate with urinary or serum sCD163 levels in IBD or PSC patients. Moreover, urinary sCD163 was not related to fecal calprotectin levels whereas serum sCD163 of IBD patients showed a positive trend. PSC associated with IBD and PSC without underlying IBD had similar levels of urinary sCD163 while serum sCD163 tended to be higher in the latter group. In PSC patients, urinary sCD163 did not correlate with serum aminotransferase levels, gamma glutamyl transferase, alkaline phosphatase, bilirubin or the Model for End Stage Liver Disease score. Ursodeoxycholic acid was prescribed to our PSC patients and fecal levels of ursodeoxycholic acid and its conjugated forms were increased in PSC compared to IBD patients. Otherwise, fecal bile acid levels of IBD and PSC patients were almost identical, and were not correlated with urinary and serum sCD163 in PSC. In summary, our study identified urinary sCD163 as a potential biomarker for PSC.
Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Biomarcadores , Colangitis Esclerosante , Enfermedades Inflamatorias del Intestino , Receptores de Superficie Celular , Humanos , Antígenos de Diferenciación Mielomonocítica/sangre , Antígenos de Diferenciación Mielomonocítica/orina , Colangitis Esclerosante/orina , Colangitis Esclerosante/sangre , Antígenos CD/sangre , Antígenos CD/orina , Receptores de Superficie Celular/sangre , Biomarcadores/orina , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Enfermedades Inflamatorias del Intestino/orina , Enfermedades Inflamatorias del Intestino/sangre , Anciano , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Complejo de Antígeno L1 de Leucocito/orina , Complejo de Antígeno L1 de Leucocito/sangre , Complejo de Antígeno L1 de Leucocito/análisisRESUMEN
Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.
RESUMEN
The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.