RESUMEN
T cells play important multifaceted roles during dengue infection, and understanding their responses is important for defining correlates of protective immunity and identifying effective vaccine antigens. Using mass cytometry and a highly multiplexed peptide-HLA (human leukocyte antigen) tetramer staining strategy, we probed T cells from dengue patients-a total of 430 dengue and control candidate epitopes-together with key markers of activation, trafficking, and differentiation. During acute disease, dengue-specific CD8+ T cells expressed a distinct profile of activation and trafficking receptors that distinguished them from non-dengue-specific T cells. During convalescence, dengue-specific T cells differentiated into two major cell fates, CD57+ CD127--resembling terminally differentiated senescent memory cells and CD127+ CD57--resembling proliferation-capable memory cells. Validation in an independent cohort showed that these subsets remained at elevated frequencies up to one year after infection. These analyses aid our understanding of the generation of T cell memory in dengue infection or vaccination.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Antígenos HLA/inmunología , Adulto , Linfocitos B/inmunología , Antígenos CD57/metabolismo , Diferenciación Celular/inmunología , Proliferación Celular/fisiología , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA/clasificación , Humanos , Memoria Inmunológica/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana EdadRESUMEN
Despite animal models showing that natural killer (NK) cells are important players in the early defense against many viral infections, the NK cell response is poorly understood in humans. Here we analyze the phenotype, temporal dynamics, regulation and trafficking of NK cells in a patient cohort with acute dengue virus infection. NK cells are robustly activated and proliferate during the first week after symptom debut. Increased IL-18 levels in plasma and in induced skin blisters of DENV-infected patients, as well as concomitant signaling downstream of the IL-18R, suggests an IL-18-dependent mechanism in driving the proliferative NK cell response. Responding NK cells have a less mature phenotype and a distinct chemokine-receptor imprint indicative of skin-homing. A corresponding NK cell subset can be localized to skin early during acute infection. These data provide evidence of an IL-18-driven NK cell proliferation and priming for skin-homing during an acute viral infection in humans.
Asunto(s)
Dengue/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Piel/inmunología , Animales , Antígenos CD , Antígenos de Diferenciación de Linfocitos T , Antígeno CD56/genética , Proliferación Celular , Virus del Dengue , Humanos , Interleucina-18/metabolismo , Lectinas Tipo C , Ratones , Fenotipo , Receptores CCR5 , Receptores CXCR3 , Receptores de Interleucina-18/metabolismo , Transducción de SeñalRESUMEN
Zika virus (ZIKV), a flavivirus with homology to dengue virus (DENV), is spreading to areas of DENV hyper-endemicity. Heterologous T cell immunity, whereby virus-specific memory T cells are activated by variant peptides derived from a different virus, can lead to enhanced viral clearance or diminished protective immunity and altered immunopathology. In mice, CD8+ T cells specific for DENV provide in vivo protective efficacy against subsequent ZIKV infection. In humans, contrasting studies report complete absence or varying degrees of DENV/ZIKV T cell cross-reactivity. Moreover, the impact of cross-reactive T cell recognition on the anti-viral capacity of T cells remains unclear. Here, we show that DENV-specific memory T cells display robust cross-reactive recognition of ZIKV NS3 ex vivo and after in vitro expansion in respectively n = 7/10 and n = 9/9 dengue-immune individuals tested. In contrast, cross-reactivity toward ZIKV capsid is low or absent. Cross-reactive recognition of DENV or ZIKV NS3 peptides elicits similar production of the anti-viral effector mediators IFN-γ, TNF-α, and CD107a. We identify 9 DENV/ZIKV cross-reactive epitopes, 7 of which are CD4+ and 2 are CD8+ T cell epitopes. We also show that cross-reactive CD4+ and CD8+ T cells targeting novel NS3 epitopes display anti-viral effector potential toward ZIKV-infected cells, with CD8+ T cells mediating direct lyses of these cells. Our results demonstrate that DENV NS3-specific memory T cells display anti-viral effector capacity toward ZIKV, suggesting a potential beneficial effect in humans of pre-existing T cell immunity to DENV upon ZIKV infection.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Cápside/inmunología , Virus del Dengue/inmunología , Memoria Inmunológica , Proteínas no Estructurales Virales/inmunología , Virus Zika/inmunología , Células Cultivadas , Reacciones Cruzadas/inmunología , Citocinas/inmunología , Dengue/sangre , Epítopos de Linfocito T/inmunología , Humanos , Inmunidad Heteróloga/inmunología , ARN Helicasas/inmunología , Serina Endopeptidasas/inmunología , Infección por el Virus ZikaRESUMEN
BACKGROUND: Dengue is a major public health problem worldwide. Assessment of adaptive immunity is important to understanding immunopathology and to define correlates of protection against dengue virus (DENV). To enable global assessment of CD4+ T cell responses, we mapped HLA-DRB1-restricted DENV-specific CD4+ T cell epitopes in individuals previously exposed to DENV in the general population of the dengue-endemic region of Managua, Nicaragua. METHODS: HLA class II epitopes in the population of Managua were identified by an in vitro IFNγ ELISPOT assay. CD4+ T cells purified by magnetic bead negative selection were stimulated with HLA-matched epitope pools in the presence of autologous antigen-presenting cells, followed by pool deconvolution to identify specific epitopes. The epitopes identified in this study were combined with those previously identified in the DENV endemic region of Sri Lanka, to generate a "megapool" (MP) consisting of 180 peptides specifically designed to achieve balanced HLA and DENV serotype coverage. The DENV CD4MP180 was validated by intracellular cytokine staining assays. RESULTS: We detected responses directed against a total of 431 epitopes, representing all 4 DENV serotypes, restricted by 15 different HLA-DRB1 alleles. The responses were associated with a similar pattern of protein immunodominance, overall higher magnitude of responses, as compared to what was observed previously in the Sri Lanka region. Based on these epitope mapping studies, we designed a DENV CD4 MP180 with higher and more consistent coverage, which allowed the detection of CD4+ T cell DENV responses ex vivo in various cohorts of DENV exposed donors worldwide, including donors from Nicaragua, Brazil, Singapore, Sri Lanka, and U.S. domestic flavivirus-naïve subjects immunized with Tetravalent Dengue Live-Attenuated Vaccine (TV005). This broad reactivity reflects that the 21 HLA-DRB1 alleles analyzed in this and previous studies account for more than 80% of alleles present with a phenotypic frequency ≥5% worldwide, corresponding to 92% phenotypic coverage of the general population (i.e., 92% of individuals express at least one of these alleles). CONCLUSION: The DENV CD4 MP180 can be utilized to measure ex vivo responses to DENV irrespective of geographical location.
RESUMEN
Dengue virus (DENV) and Zika virus (ZIKV) are rapidly emerging mosquito-borne flaviviruses that represent a public health concern. Understanding host protective immunity to these viruses is critical for the design of optimal vaccines. Over a decade of research has highlighted a significant contribution of the T-cell response to both protection and/or disease enhancement during DENV infection, the latter being mainly associated with sub-optimal cross-reactive T-cell responses during secondary infections. Phase IIb/III clinical trials of the first licensed tetravalent dengue vaccine highlight increased vaccine efficacy in dengue-immune as opposed to dengue-naive vaccinees, suggesting a possible immunoprotective role of pre-existing DENV-specific T cells that are boosted upon vaccination. No vaccine is available for ZIKV and little is known about the T-cell response to this virus. ZIKV and DENV are closely related viruses with a sequence identity ranging from 44% and 56% for the structural proteins capsid and envelope to 68% for the more conserved non-structural proteins NS3/NS5, which represent the main targets of the CD4+ and CD8+ T-cell response to DENV, respectively. In this review we discuss our current knowledge of T-cell immunity to DENV and what it can teach us for the study of ZIKV. The extent of T-cell cross-reactivity towards ZIKV of pre-existing DENV-specific memory T cells and its potential impact on protective immunity and/or immunopathology will also be discussed.