Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(12): e31846, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952363

RESUMEN

The Internet of Things communication protocol is prone to security vulnerabilities when facing increasing types and scales of network attacks, which can affect the communication security of the Internet of Things. It is crucial to effectively detect these vulnerabilities in order to improve the security of IoT communication protocols and promptly fix them. Therefore, this study proposes a distributed IoT communication protocol vulnerability detection method based on an improved parallelized fuzzy testing algorithm. Firstly, based on design principles and by comparing different communication protocols, a communication architecture for the distribution network's Internet of Things was constructed, and the communication protocols were formalized and decomposed. Next, preprocess the vulnerability detection samples, and then use genetic algorithm to improve the parallelized fuzzy testing algorithm to perform vulnerability detection. Through this improved algorithm, the missed detection rate and false detection rate can be effectively reduced, thereby improving the security of IoT communication protocols. The experimental results show that the highest missed detection rate of this method is only 4.0 %, and the false detection rate is low, with high detection efficiency. This indicates that the method has good performance and reliability in detecting vulnerabilities in IoT communication protocols.

2.
Molecules ; 29(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338360

RESUMEN

Currently, the obvious side effects of anti-tumor drugs, premature drug release, and low tumor penetration of nanoparticles have largely reduced the therapeutic effects of chemotherapy. A drug delivery vehicle (MCN-SS-GQDs) was designed innovatively. For this, the mesoporous carbon nanoparticles (MCN) with the capabilities of superior photothermal conversion efficiency and high loading efficiency were used as the skeleton structure, and graphene quantum dots (GQDs) were gated on the mesopores via disulfide bonds. The doxorubicin (DOX) was used to evaluate the pH-, GSH-, and NIR-responsive release performances of DOX/MCN-SS-GQDs. The disulfide bonds of MCN-SS-GQDs can be ruptured under high glutathione concentration in the tumor microenvironment, inducing the responsive release of DOX and the detachment of GQDs. The local temperature of a tumor increases significantly through the photothermal conversion of double carbon materials (MCN and GQDs) under near-infrared light irradiation. Local hyperthermia can promote tumor cell apoptosis, accelerate the release of drugs, and increase the sensitivity of tumor cells to chemotherapy, thus increasing treatment effect. At the same time, the detached GQDs can take advantage of their extremely small size (5-10 nm) to penetrate deeply into tumor tissues, solving the problem of low permeability of traditional nanoparticles. By utilizing the photothermal properties of GQDs, synergistic photothermal conversion between GQDs and MCN was realized for the purpose of synergistic photothermal treatment of superficial and deep tumor tissues.


Asunto(s)
Antineoplásicos , Grafito , Hipertermia Inducida , Nanopartículas , Neoplasias , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Grafito/química , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina , Nanopartículas/química , Fototerapia , Carbono/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Disulfuros , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA