Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093603

RESUMEN

Retinal artery occlusion (RAO), which is positively correlated with acute ischemic stroke (IS) and results in severe visual impairment, lacks effective intervention drugs. This study aims to perform integrated analysis using UK Biobank plasma proteome data of RAO and IS to identify potential targets and preventive drugs. A total of 7191 participants (22 RAO patients, 1457 IS patients, 8 individuals with both RAO and IS, and 5704 healthy age-gender-matched controls) were included in this study. Unique 1461 protein expression profiles of RAO, IS, and the combined data set, extracted from UK Biobank Plasma proteomics projects, were analyzed using both differential expression analysis and elastic network regression (Enet) methods to identify shared key proteins. Subsequent analyses, including single cell type expression assessment, pathway enrichment, and druggability analysis, were conducted for verifying shared key proteins and discovery of new drugs. Five proteins were found to be shared among the samples, with all of them showing upregulation. Notably, adhesion G-protein coupled receptor G1 (ADGRG1) exhibited high expression in glial cells of the brain and eye tissues. Gene set enrichment analysis revealed pathways associated with lipid metabolism and vascular regulation and inflammation. Druggability analysis unveiled 15 drug candidates targeting ADGRG1, which demonstrated protective effects against RAO, especially troglitazone (-8.5 kcal/mol). Our study identified novel risk proteins and therapeutic drugs associated with the rare disease RAO, providing valuable insights into potential intervention strategies.

2.
Acc Chem Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167606

RESUMEN

ConspectusLayered metal halide perovskites represent a natural quantum well system for charge carriers that provides rich physics, and the organic encapsulation of the inorganic metal halide layers not only increases their stability in devices but also provides an immense freedom to design their functionality. Intriguingly, these organic moieties strongly impact the optical, electrical, and mechanical properties, not only through their dielectric, elastic, and chemical properties but also because of induced mechanical distortions in the inorganic lattice. This tunability makes two-dimensional layered perovskites (2DLPs) highly attractive as light emitters. Common consensus is that exciton-phonon coupling plays an important role in radiative recombination. For bulk and some two-dimensional (2D) materials, the band edge emission broadening can be described by the classic models for polar inorganic semiconductors, while for the temperature dependence of the self-trapped exciton emission, an analysis developed for color centers has been successfully applied. For many 2DLPs these approaches do not work because of the complexity of their vibrational spectra. However, their emission is still strongly determined by phonons, and therefore, an adequate understanding of the electron-phonon coupling needs to be developed.With polarized and angle-resolved Raman spectroscopy studies on single 2DLP flakes based on different ammonium molecules as organic cations, in 2020 we revealed very rich phonon spectra in the low-frequency regime. Although the phonon bands at low frequency can generally be attributed to the vibrations of the inorganic lattice, we found very different responses by only changing the type of organic cations. In addition, the intensity of the different phonon modes depended strongly on the angle of the linearly polarized excitation beam with respect to the in-plane axes of the octahedron lattice. In 2022, we mapped this angular dependence of the phonon modes, which allowed identification of the directionality of the different lattice vibrations. By correlating the phonon spectra with the temperature-dependent emission for a set of 2DLPs that featured very different self-trapped exciton (STE) emission, we demonstrated that the exciton relaxation cannot be related to coupling with a single (longitudinal-optical) phonon band and that several phonon bands should be involved in the emission process. To gain insights into the exciton-phonon coupling effects on the band edge emission, we performed both angle-resolved polarized emission and Raman spectroscopy on single 2D lead iodide perovskite microcrystals. These experiments revealed the impact of the organic cations on the linear polarization of the emission and corroborated that multiple phonon bands should be involved in the radiative recombination process. Analysis of the temperature-dependent line width broadening of the band edge emission showed that for many systems, the behavior cannot be described by assuming the involvement of only one phonon mode in the electron-phonon coupling process. Our studies revealed a wealth of highly directional low-frequency phonons in 2DLPs from which several bands are involved in the emission process, which leads to diverse optical and vibrational properties depending on the type of organic cation in the material.

3.
Nano Lett ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171793

RESUMEN

Two-dimensional metal halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for the tunability of mechanical and optoelectronic properties. The band-edge emission is defined by the structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and what kind of phonons are involved are still under debate. Here we investigate the emission, reflectance, and phonon response from single two-dimensional lead iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of low-frequency phonons with nonorthogonal directionality contribute to the band-edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design polarization properties.

4.
Adv Sci (Weinh) ; : e2308900, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159065

RESUMEN

Heart failure (HF) is a prevalent cardiovascular disease with significant morbidity and mortality rates worldwide. Due to the intricate structure of the heart, diverse cell types, and the complex pathogenesis of HF, further in-depth investigation into the underlying mechanisms  is required. The elucidation of the heterogeneity of cardiomyocytes and the intercellular communication network is particularly important. Traditional high-throughput sequencing methods provide an average measure of gene expression, failing to capture the "heterogeneity" between cells and impacting the accuracy of gene function knowledge. In contrast, single-cell sequencing techniques allow for the amplification of the entire genome or transcriptome at the individual cell level, facilitating the examination of gene structure and expression with unparalleled precision. This approach offers valuable insights into disease mechanisms, enabling the identification of changes in cellular components and gene expressions during hypertrophy associated with HF. Moreover, it reveals distinct cell populations and their unique roles in the HF microenvironment, providing a comprehensive understanding of the cellular landscape that underpins HF pathogenesis. This review focuses on the insights provided by single-cell sequencing techniques into the mechanisms underlying HF and discusses the challenges encountered in current cardiovascular research.

5.
Neuroimage ; : 120803, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181194

RESUMEN

BACKGROUND: Perivascular spaces (PVS) visible on magnetic resonance imaging (MRI) are significant markers associated with various neurological diseases. Although quantitative analysis of PVS may enhance sensitivity and improve consistency across studies, the field lacks a universally validated method for analyzing images from multi-center studies. METHODS: We annotated PVS on multi-center 3D T1-weighted (T1w) images acquired using scanners from three major vendors (Siemens, General Electric, and Philips). A neural network, mcPVS-Net (multi-center PVS segmentation network), was trained using data from 40 subjects and then tested in a separate cohort of 15 subjects. We assessed segmentation accuracy against ground truth masks tailored for each scanner vendor. Additionally, we evaluated the agreement between segmented PVS volumes and visual scores for each scanner. We also explored correlations between PVS volumes and various clinical factors such as age, hypertension, and white matter hyperintensities (WMH) in a larger sample of 1020 subjects. Furthermore, mcPVS-Net was applied to a new dataset comprising both T1w and T2-weighted (T2w) images from a United Imaging scanner to investigate if PVS volumes could discriminate between subjects with differing visual scores. We also compared the mcPVS-Net with a previously published method that segments PVS from T1 images. RESULTS: In the test dataset, mcPVS-Net achieved a mean DICE coefficient of 0.80, with an average Precision of 0.81 and Recall of 0.79, indicating good specificity and sensitivity. The segmented PVS volumes were significantly associated with visual scores in both the basal ganglia (r=0.541, p<0.001) and white matter regions (r=0.706, p<0.001), and PVS volumes were significantly different among subjects with varying visual scores. Segmentation performance was consistent across different scanner vendors. PVS volumes exhibited significant associations with age, hypertension, and WMH. In the United Imaging scanner dataset, PVS volumes showed good associations with PVS visual scores evaluated on either T1w or T2w images. Compared to the previously published method, mcPVS-Net showed a higher accuracy and improved PVS segmentation in the basal ganglia region. CONCLUSION: The mcPVS-Net demonstrated good accuracy for segmenting PVS from 3D T1w images. It may serve as a useful tool for future PVS research.

6.
Cell Commun Signal ; 22(1): 395, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123188

RESUMEN

Esophageal cancer is common worldwide, with ESCC being the most frequent tumor in East Asia. Tumor-associated macrophages are an important component of the ESCC microenvironment. SUMOylation is a post-translational modification of proteins, and SUMO-specific proteases (SENPs) play an important role in de-SUMOylation. In human patients, we discovered that the levels of SENP3 were upregulated in the tumor-associated macrophages. Furthermore, the loss of SENP3 enhanced the alternative activation of macrophages in the 4-NQO-induced ESCC mice model. This is the first study to identify SENP3-mediated macrophage polarization via the de-SUMOylation of interferon regulatory factor 4 (IRF4) at the K349 site. Alternative activation of macrophages increases the migration and invasion potential of ESCC cells and promotes their progression in vivo. Moreover, patients with relatively low SENP3 expression in macrophages exhibit higher primary PET SUVmax value and lymph node metastasis rates. In summary, this study revealed that SENP3-mediated IRF4 de-SUMOylation is crucial for the alternative activation of macrophages and influences the progression of ESCC.


Asunto(s)
Cisteína Endopeptidasas , Factores Reguladores del Interferón , Activación de Macrófagos , Sumoilación , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Progresión de la Enfermedad , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Macrófagos/metabolismo , Macrófagos Asociados a Tumores/metabolismo
7.
Adv Mater ; : e2408045, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177118

RESUMEN

Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.

8.
Zhen Ci Yan Jiu ; 49(7): 760-766, 2024 Jul 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39020495

RESUMEN

OBJECTIVES: To observe the differences in the effects of different dosages of grain-sized moxibustion on uterine artery blood flow in patients with cold and dampness primary dysmenorrhea (PD). METHODS: A total of 60 patients with PD were randomly divided into 3 groups with 20 cases in each group. Acupoints Sanyinjiao (SP6), Diji (SP8) and Xuehai (SP10) were selected in all the 3 groups, and different dosages of grain-sized moxibustion were used (3 moxa cones, 6 moxa cones, 9 moxa cones) respectively. Treatment started 7 days before menstruation for 3 times, lasting for a total of 3 menstrual cycles. The values of uterine artery blood flow parameters including pulsatility index (PI), resistance index (RI), and systolic/diastolic ratio (S/D) were recorded before and after treatment. The visual analog scale (VAS) score and cox menstrual symptom scale (CMSS) score (including severity [CMSS-S] and time of duration [CMSS-T]) were evaluated before treatment, at the end of each menstrual cycle, and one menstrual cycle after treatment. RESULTS: The values of uterine artery blood flow parameters (PI, RI, S/D) after treatment in the 9 moxa cones group were lower than those before treatment, as well as lower than those in the 3 and 6 moxa cones groups after treatment (P<0.05). The VAS scores of the 3 moxa cones group were lower than those before treatment in the first and second cycle (P<0.05). The VAS scores of the 6 and 9 moxa cones groups were lower than those before treatment at each observation point (P<0.05), and were lower than those of the 3 moxa cones group in the third cycle of treatment and follow-up period (P<0.05). And the VAS score of the 9 moxa cones group was lower than that of the 6 moxa cones group during the follow-up period (P<0.05). Compared with the scores before treatment, the CMSS-T scores at each observation point after treatment were lower in the 9 moxa cones group (P<0.05);the CMSS-T scores in the second and third cycle after treatment, and follow-up period were lower in the 6 moxa cones group (P<0.05), with the CMSS-S scores in the second and third cycle after treatment, and follow-up period lower in the 6 and 9 moxa cones groups (P<0.05). The CMSS-T and CMSS-S scores of the 6 and 9 moxa cones groups were lower than those of the 3 moxa cones group in the third cycle and follow-up period (P<0.05). The CMSS-T and CMSS-S scores of the 9 moxa cones group were lower than those of the 6 moxa cones group during the follow-up period (P<0.05). CONCLUSIONS: Grain-Sized moxibustion has dose-effect relationship in the treatment of PD. Compared with 3 and 6 moxa cones groups, 9 moxa cones group has advantages in improving uterine artery blood flow parameters and alleviating dysmenorrhea symptoms in PD patients.


Asunto(s)
Dismenorrea , Moxibustión , Humanos , Femenino , Dismenorrea/terapia , Dismenorrea/fisiopatología , Adulto , Adulto Joven , Arteria Uterina/fisiopatología , Puntos de Acupuntura , Adolescente
9.
World J Gastroenterol ; 30(24): 3086-3105, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983958

RESUMEN

BACKGROUND: Helicobacter pylori (HP), the most common pathogenic microorganism in the stomach, can induce inflammatory reactions in the gastric mucosa, causing chronic gastritis and even gastric cancer. HP infection affects over 4.4 billion people globally, with a worldwide infection rate of up to 50%. The multidrug resistance of HP poses a serious challenge to eradication. It has been de-monstrated that compared to bismuth quadruple therapy, Qingre Huashi decoction (QHD) combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions; in addition, QHD can directly inhibit and kill HP in vitro. AIM: To explore the effect and mechanism of QHD on clinically multidrug-resistant and strong biofilm-forming HP. METHODS: In this study, 12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients. In vitro, the minimum inhibitory concentration (MIC) values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining, respectively. The most robust biofilm-forming strain of HP was selected, and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation. This assessment was performed using agar dilution, E-test, killing dynamics, and transmission electron microscopy (TEM). The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation. Crystalline violet method, scanning electron microscopy, laser confocal scanning microscopy, and (p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains. The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction. Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups. RESULTS: HP could form biofilms of different degrees in vitro, and the intensity of formation was associated with the drug resistance of the strain. QHD had strong bacteriostatic and bactericidal effects on HP, with MICs of 32-64 mg/mL. QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains, disrupt the biofilm structure, lower the accumulation of (p)ppGpp, decrease the expression of biofilm-related genes including LuxS, Spot, glup (HP1174), NapA, and CagE, and reduce the expression of efflux pump-related genes such as HP0605, HP0971, HP1327, and HP1489. Based on metabolomic analysis, QHD induced oxidative stress in HP, enhanced metabolism, and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate (AMP), thereby affecting HP growth, metabolism, and protein synthesis. CONCLUSION: QHD exerts bacteriostatic and bactericidal effects on HP, and reduces HP drug resistance by inhibiting HP biofilm formation, destroying its biofilm structure, inhibiting the expression of biofilm-related genes and efflux pump-related genes, enhancing HP metabolism, and activating AMP in HP.


Asunto(s)
Antibacterianos , Biopelículas , Medicamentos Herbarios Chinos , Infecciones por Helicobacter , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/aislamiento & purificación , Biopelículas/efectos de los fármacos , Humanos , Medicamentos Herbarios Chinos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Gastroscopía
11.
Arthritis Res Ther ; 26(1): 126, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961491

RESUMEN

BACKGROUND: Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) with poor treatment outcomes. The role and underlying mechanisms of ferroptosis in LN remain largely unknown. We aimed to explore ferroptosis-related molecular subtypes and assess their prognostic value in LN patients. METHODS: Molecular subtypes were classified on the basis of differentially expressed ferroptosis-related genes (FRGs) via the Consensus ClusterPlus package. The enriched functions and pathways, immune infiltrating levels, immune scores, and immune checkpoints were compared between the subgroups. A scoring algorithm based on the subtype-specific feature genes identified by artificial neural network machine learning, referred to as the NeuraLN, was established, and its immunological features, clinical value, and predictive value were evaluated in patients with LN. Finally, immunohistochemical analysis was performed to validate the expression and role of feature genes in glomerular tissues from LN patients and controls. RESULTS: A total of 10 differentially expressed FRGs were identified, most of which showed significant correlation. Based on the 10 FRGs, LN patients were classified into two ferroptosis subtypes, which exhibited significant differences in immune cell abundances, immune scores, and immune checkpoint expression. A NeuraLN-related protective model was established based on nine subtype-specific genes, and it exhibited a robustly predictive value in LN. The nomogram and calibration curves demonstrated the clinical benefits of the protective model. The high-NeuraLN group was closely associated with immune activation. Clinical specimens demonstrated the alterations of ALB, BHMT, GAMT, GSTA1, and HAO2 were in accordance with bioinformatics analysis results, GSTA1 and BHMT were negatively correlated with the severity of LN. CONCLUSION: The classification of ferroptosis subtypes and the establishment of a protective model may form a foundation for the personalized treatment of LN patients.


Asunto(s)
Ferroptosis , Nefritis Lúpica , Redes Neurales de la Computación , Humanos , Ferroptosis/genética , Ferroptosis/inmunología , Nefritis Lúpica/inmunología , Nefritis Lúpica/genética , Femenino , Masculino , Adulto , Aprendizaje Automático , Pronóstico , Persona de Mediana Edad
12.
Front Microbiol ; 15: 1395665, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979539

RESUMEN

Early weaning leads to weaning stress in calves, which hinders healthy growth and development. As an excellent sweetener applied in food, steviol glycosides (STE) has also been shown to exhibit positive biological activity in monogastric animals. Therefore, this study aimed to evaluate the impact of incorporating STE as a dietary supplement on rumen development, fermentation, and microbiota of rumen in weaned calves. This study selected 24 healthy Holstein bull calves and randomly allocated them into two groups (CON and STE). The results indicated that supplementation STE group improved rumen development in weaned calves, as demonstrated by a marked increase in the weight of the rumen, as well as the length and surface area of the rumen papilla. Compared with the CON group, the concentrations of total volatile fatty acids (TVFA), propionate, butyrate, and valerate were higher in the STE group. Moreover, STE treatment increased the relative abundance of Firmicutes and Actinobacteria at the phylum level. At the genus level, the STE group showed a significantly increased relative abundance of Succiniclasticum, Lachnospiraceae_NK3A20_group, and Olsenella, and a decreased relative abundance of Acinetobacter compared to the CON group. Pusillimonas, Lachnospiraceae_NK3A20_group, Olsenella, and Succiniclasticum were significantly enriched in rumen chyme after supplementation with STE, as demonstrated by LEfSe analysis. Overall, our findings revealed that rumen bacterial communities altered in response to the dietary supplementation with STE, and some bacterial taxa in these communities may have positive effects on rumen development during this period.

13.
Heliyon ; 10(11): e32377, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947486

RESUMEN

Acute kidney injury (AKI) frequently emerges as a consequential non-neurological sequel to traumatic brain injury (TBI), significantly contributing to heightened mortality risks. The intricate interplay of oxidative stress in the pathophysiology of TBI underscores the centrality of the Keap1-Nrf2/HO-1 signaling pathway as a pivotal regulator in this context. This study endeavors to elucidate the involvement of the Keap1-Nrf2/HO-1 pathway in modulating oxidative stress in AKI subsequent to TBI and concurrently explore the therapeutic efficacy of dimethyl fumarate (DMF). A rat model of TBI was established via the Feeney free-fall method, incorporating interventions with varying concentrations of DMF. Assessment of renal function ensued through measurements of serum creatinine and neutrophil gelatinase-associated lipocalin. Morphological evaluation of renal pathology was conducted employing quantitative hematoxylin and eosin staining. The inflammatory response was scrutinized by quantifying interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α levels. Oxidative stress levels were discerned through quantification of malondialdehyde and superoxide dismutase. The apoptotic cascade was examined via the terminal deoxynucleotidyl transferase dUTP deletion labeling assay. Western blotting provided insights into the expression dynamics of proteins affiliated with the Keap1-Nrf2/HO-1 pathway and apoptosis. The findings revealed severe kidney injury, heightened oxidative stress, inflammation, and apoptosis in the traumatic brain injury model. Treatment with DMF effectively reversed these changes, alleviating oxidative stress by activating the Keap1-Nrf2/HO-1 signaling pathway, ultimately conferring protection against AKI. Activating Keap1-Nrf2/HO-1 signaling pathway may be a potential therapeutic strategy for attenuating oxidative stress-induced AKI after TBI.

14.
J Cancer Surviv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833080

RESUMEN

PURPOSE: Hearing loss is a frequently observed comorbidity in patients with nasopharyngeal carcinoma (NPC). Accumulating evidence demonstrated that acupuncture can safely manage cancer and its treatment-related symptoms, but its effect in minimizing the likelihood of experiencing sudden sensorineural hearing loss (SSHL) has not been established. So this work aimed to determine the risk of SSHL among NPC persons with or without acupuncture use. METHODS: One population-level, nested case-control design within a cohort study is employed. Relevant information on persons aged 20-80 years who were afflicted with NPC between 2000 and 2010 was extracted from a nationwide health claims database. From them, we identified the cases who had the first SSHL diagnosis occurring after NPC, and all of them were randomly matched to two controls without SSHL. Conditional logistic regression was employed to calculate odds ratios (OR) and its respective 95% confidence intervals (CI) for incident SSHL in relation to acupuncture treatment. RESULTS: Eight hundred eleven SSHL cases were randomly matched to 1452 controls. Those receiving conventional care plus acupuncture use had a reduced adjusted OR of 0.39 (95% CI, 0.25-0.60) for SSHL. We further discovered that the longer usage of acupuncture remarkably correlated with reduction of SSHL risk in a dose-dependent manner. CONCLUSIONS: Delineation of the benefit from integration of acupuncture into conventional care may be a reference in instituting more appropriate care for NPC subjects. IMPLICATIONS FOR CANCER SURVIVORS: Patients living with NPC may benefit from a timely integration of acupuncture into routine care to lessen SSHL risk.

15.
Proc Natl Acad Sci U S A ; 121(24): e2400378121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830096

RESUMEN

Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.


Asunto(s)
Citidina , Virus de la Hepatitis B , ARN Viral , Transcripción Reversa , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/genética , Humanos , Transcripción Reversa/genética , Metilación , Replicación Viral/genética , Epigénesis Genética , Virión/metabolismo , Virión/genética , Transcriptoma
16.
Front Med (Lausanne) ; 11: 1373639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903826

RESUMEN

Background: Rheumatoid arthritis (RA) is a chronic disease and may worsen over time. Today, nurse-led case management (NLCM) has been recommended to improve clinical outcomes for chronic disease patients, yet little is known regarding its impact on pain, fatigue, and C-reactive protein (CRP) among RA patients. We aimed to explore this issue among such groups via a two-group pre- and post-test approach. Methods: All subjects were recruited from one hospital in Taiwan from January 2017 to June 2018 and assigned to either a 6-month NLCM program in addition to usual care or to a control group that received usual care only. All of them were followed for 2 years. Outcomes of interests were compared at four time points: baseline, the third day after NLCM completion, and at 6 and 24 months after NLCM. Effects between them were tested using the generalized estimating equations (GEE) model after adjusting for differences at baseline. Results: A total of 50 patients in the NLCM group and 46 in the control group were recruited for data analysis. Results from the GEE model indicated that integrating NLCM into conventional care benefited patients in decreasing levels of pain and fatigue, as well as CRP value. These improvements were still observed for 2 years after NLCM. Conclusion: NLCM was shown to be helpful in lowering pain, fatigue, and CRP, which implies that NLCM may be a reference in the provision of tailored care for those affected by rheumatism.

17.
Phytother Res ; 38(7): 3720-3735, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776174

RESUMEN

Idiopathic pulmonary fibrosis treatments are limited, often with severe side effects, highlighting the need for novel options. Taraxerone has diverse biomedical properties, but its mechanism remains unclear. This study investigates taraxerone's impact and the mechanisms involved in bleomycin-induced pulmonary fibrosis in mice. After establishing a pulmonary fibrosis mouse model, taraxerone was intraperitoneally injected continuously for 14-28 days. The in vivo antifibrotic and antioxidative stress effects of taraxerone were assessed. In vitro, the influence of taraxerone on transforming growth factor-ß1-induced myofibroblast transformation and oxidative stress was investigated. Subsequently, quantitative polymerase chain reaction screened the histone deacetylase and Sirtuin family, and taraxerone's effects on SIRT1 were assessed. After SIRT1 siRNA treatment, changes in myofibroblast transformation and antioxidant capacity in response to taraxerone were observed. Acetylation and phosphorylation levels of Smad3 were evaluated. We also examined the binding levels of SIRT1 with Pho-Smad3 and Smad3, as well as the nuclear localization of Smad2/3. EX527 confirmed SIRT1's in vivo action in response to taraxerone. In vitro experiments suggested that taraxerone inhibited myofibroblast differentiation by activating SIRT1 and reducing oxidative stress. We also observed a new interaction between SIRT1 and the Smad complex. Taraxerone activates SIRT1, enabling it to bind directly to Smad3. This leads to reduced Smad complex phosphorylation and limited nuclear translocation. As a result, the transcription of fibrotic factors is reduced. In vivo validation confirms taraxerone's SIRT1-mediated antifibrotic effectiveness. This suggests that targeting SIRT1-mediated inhibition of myofibroblast differentiation could be a key strategy in taraxerone-based therapy for pulmonary fibrosis.


Asunto(s)
Antioxidantes , Bleomicina , Ratones Endogámicos C57BL , Estrés Oxidativo , Fibrosis Pulmonar , Transducción de Señal , Sirtuina 1 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Sirtuina 1/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína smad3/metabolismo , Antioxidantes/farmacología , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Modelos Animales de Enfermedad , Fosforilación , Acetilación
18.
Cell Biosci ; 14(1): 46, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584258

RESUMEN

BACKGROUND: The anti-aging protein Klotho plays a protective role in kidney disease, but its potential as a biomarker for chronic kidney disease (CKD) is controversial. Additionally, the main pathways through which Klotho exerts its effects on CKD remain unclear. Therefore, we used bioinformatics and clinical data analysis to determine its role in CKD. RESULTS: We analyzed the transcriptomic and clinical data from the Nephroseq v5 database and found that the Klotho gene was mainly expressed in the tubulointerstitium, and its expression was significantly positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with blood urea nitrogen (BUN) in CKD. We further found that Klotho gene expression was mainly negatively associated with inflammatory response and positively associated with lipid metabolism in CKD tubulointerstitium by analyzing two large sample-size CKD tubulointerstitial transcriptome datasets. By analyzing 10-year clinical data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016, we also found that Klotho negatively correlated with inflammatory biomarkers and triglyceride and positively correlated with eGFR in the CKD population. Mediation analysis showed that Klotho could improve renal function in the general population by modulating the inflammatory response and lipid metabolism, while in the CKD population, it primarily manifested by mediating the inflammatory response. Restricted cubic spline (RCS) analysis showed that the optimal concentration range for Klotho to exert its biological function was around 1000 pg/ml. Kaplan-Meier curves showed that lower cumulative hazards of all-cause mortality in participants with higher levels of Klotho. We also demonstrated that Klotho could reduce cellular inflammatory response and improve cellular lipid metabolism by establishing an in vitro model similar to CKD. CONCLUSIONS: Our results suggest that Klotho exerts protection in CKD, which may be mainly related to the regulation of inflammatory response and lipid metabolism, and it can serve as a potential biomarker for CKD.

19.
BMC Womens Health ; 24(1): 240, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622605

RESUMEN

BACKGROUND: Human papillomavirus (HPV) infection is an important factor leading to cervical cell abnormalities. 90% of cervical cancers are closely associated with persistent infection of high-risk HPV, with the highest correlation with HPV16 and 18. Currently available vaccines and antivirals have limited effectiveness and coverage. Guanylate binding protein 1 (GBP1) was induced by interferon gamma and involved in many important cellular processes such as clearance of various microbial pathogens. However, whether GBP1 can inhibit human papillomavirus infection is unclear. RESULTS: In this study, we found that GBP1 can effectively degrade HPV18 E6, possibly through its GTPase activity or other pathways, and E6 protein degrades GBP1 through the ubiquitin-proteasome pathway to achieve immune escape. CONCLUSION: Therefore, GBP1 is an effector of IFN-γ anti-HPV activity. Our findings provided new insights into the treatment of HPV 18 infections.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas de Unión al GTP , Papillomavirus Humano 18 , Interferón gamma/farmacología
20.
Biomed Opt Express ; 15(4): 2343-2357, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633066

RESUMEN

In neurosurgery, accurately identifying brain tumor tissue is vital for reducing recurrence. Current imaging techniques have limitations, prompting the exploration of alternative methods. This study validated a binary hierarchical classification of brain tissues: normal tissue, primary central nervous system lymphoma (PCNSL), high-grade glioma (HGG), and low-grade glioma (LGG) using transfer learning. Tumor specimens were measured with optical coherence tomography (OCT), and a MobileNetV2 pre-trained model was employed for classification. Surgeons could optimize predictions based on experience. The model showed robust classification and promising clinical value. A dynamic t-SNE visualized its performance, offering a new approach to neurosurgical decision-making regarding brain tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA