Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(8): 3730-3745, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220865

RESUMEN

Dexamethasone (DEX) is used to treat ocular surface diseases. However, regulating DEX duration in tears while preventing its absorption into the anterior chamber is critical for balancing its therapy effects and the side effects. In this study, a novel magnetic nanoparticle (MNP)-micelle (MC) co-delivery system (MMDS) was developed. The MC moiety in the MMDS served as the carrier for DEX and the MNP part endowed the MMDS with magnetic-responsive properties. To extend its residency, the MMDS was magnetically attracted by an external magnet after instilling, which acted as a precorneal drug-depot enabling a sustainable release of DEX in tears. With combination of magnet treatment, the topical instillation of MMDS@DEX significantly prolonged the DEX-retention in tears and increased the DEX-concentration in the cornea and conjunctiva, as well as concurrently reduced the DEX-level in the aqueous humor, when compared with the commercial DEX eye drop treatment. The combination of MMDS@DEX and magnet treatment exerted significantly better therapeutic effects against DED with smaller side effects than conventional treatments including DEX suspension, commercial DEX eye drops, as well as the MMDS@DEX treatment alone. The present work provided a new method for the effective delivery of DEX to ocular surface tissues while reducing its side effects, which will be beneficial to the treatments of a wide range of ocular surface diseases.

2.
Heliyon ; 10(17): e36488, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281475

RESUMEN

Spinal cord injury (SCI) is a serious and difficult to treat traumatic disease of the central nervous system. Spinal cord injury causes a variety of detrimental effects, including neuroinflammation and ferroptosis, leading to chronic functional impairment and death. Recent studies have shown that microglia/macrophages (M/Ms) at the injury site remain primarily in the pro-inflammatory state, which is detrimental to recovery. However, information on the factors behind pro-inflammatory polarization skew in the injured spinal cord remains unclear. In this study, we found that Tumor Necrosis Factor-α(TNF-α) ablation protected after SCI by suppressing neuroinflammation and ferroptosis. Though using TNF-α knock out mice (TNF-/-), we induced downregulation of TNF-α in M/Ms and further investigated its effect on SCI outcome. In TNF-/- mice, significant behavioral improvements were observed as early as 7 days after injury. We showed that TNF-α inhibition promote injury-mediated M/Ms polarization from pro-inflammatory to anti-inflammatory phenotype in vivo. Furthermore, accumulated iron in M/Ms after SCI increased the expression of TNF-α and the population of M/Ms to pro-inflammatory phenotype. Moreover, zinc supplement reduced the secondary damage caused by iron overload. In conclusion, we found that knock out of TNF-α promotes recovery of motor function after spinal cord injury in mice by inhibiting ferroptosis and promoting the shift of macrophages to an anti-inflammatory phenotype, indicating that there is great potential for this therapy to SCI.

3.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39282416

RESUMEN

BACKGROUND & AIMS: We aimed to investigate the relative efficacy of feeding different bile acids in preventing PNALD in neonatal pigs. METHODS: Newborn pigs given total parenteral nutrition (TPN) combined with minimal enteral feeding of chenodeoxycholic acid (CDCA), or increasing doses of obeticholic acid (OCA) for 19 days. RESULTS: Enteral OCA (5 and 15 mg/kg), but not CDCA (30 mg/kg) reduced blood cholestasis markers compared to TPN controls and increased bile acids in the gallbladder and intestine. Major bile acids in the liver and distal intestine were CDCA, HCA, HDCA and OCA, and their relative proportions were increased by the type of bile acid (CDCA or OCA) given enterally. High doses of OCA increased the total NR1H4-agonistic bile acid profile in the liver and intestine above 50% total bile acids. Both CDCA and OCA treatments suppressed hepatic cyp7a1 expression, but only OCA increased hepatobiliary transporters, ABCB11, ABCC$ and ABCB1. Plasma phytosterol levels were reduced and biliary levels were increased by CDCA and OCA and hepatic sterol transporters, abcg5/8, expression were increased by OCA. Both CDCA and OCA increased plasma FGF19 and OCA increased intestinal FGF19, FABP6, and SLC51A. Both CDCA and OCA increased intestinal mucosal growth, whereas CDCA increased the plasma GLP-2, GLP-1 and GIP. CONCLUSIONS: Enteral OCA prevented cholestasis and phytosterolemia by increased hepatic bile acid and sterol transport via induction of hepatobiliary transporter FXR target genes and not by suppression of bile acid synthesis genes. We also showed an intestinal trophic action of OCA that demonstrates a dual clinical benefit of FXR agonism in the prevention of PNALD in piglets.

4.
Microbiol Spectr ; : e0422223, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287457

RESUMEN

Canine parvovirus (CPV) can cause high morbidity and mortality rates in puppies, posing a significant threat to both pet dogs and the breeding industry. Rapid, accurate, and convenient detection methods are important for the early intervention and treatment of canine parvovirus. In this study, we propose a visual CPV detection system called nucleic acid mismatch enzyme digestion (NMED). This system combines loop-mediated isothermal amplification (LAMP), endonuclease for gene mismatch detection, and colloidal gold lateral chromatography. We demonstrated that NMED can induce the binding of the amplicon from the sample to the specific labeling probe, which in turn triggers digestion by the endonuclease. The sensitivity and visual visibility of LAMP were increased by combining endonuclease and colloidal gold lateral chromatography assisted by a simple temperature-controlled device. The sensitivity of the NMED assay was 1 copy/µL, which was consistent with quantitative PCR (qPCR). The method was validated with 20 clinical samples that potentially had CPV infection; 15 positive samples and 5 negative samples were evaluated; and the detection accuracy was consistent with that of qPCR. As a rapid, accurate, and convenient molecular diagnostic method, NMED has great potential for application in the field of pathogenic microorganism detection. IMPORTANCE: The NMED method has been established in the laboratory and used for CPV detection. The method has several advantages, including simple sampling, high sensitivity, intuitive results, and no requirement for expensive equipment. The establishment of this method has commercial potential and offers a novel approach and concept for the future development of clinical detection of pathogenic microorganisms.

5.
Nat Commun ; 15(1): 8377, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333081

RESUMEN

Posttranslational modifications (PTMs) of tubulin, termed the "tubulin code", play important roles in regulating microtubule functions within subcellular compartments for specialized cellular activities. While numerous tubulin PTMs have been identified, a comprehensive understanding of the complete repertoire is still underway. In this study, we report that α-tubulin lactylation is catalyzed by HDAC6 by using lactate to increase microtubule dynamics in neurons. We identify lactylation on lysine 40 of α-tubulin in the soluble tubulin dimers. Notably, lactylated α-tubulin enhances microtubule dynamics and facilitates neurite outgrowth and branching in cultured hippocampal neurons. Moreover, we discover an unexpected function of HDAC6, acting as the primary lactyltransferase to catalyze α-tubulin lactylation. HDAC6-catalyzed lactylation is a reversible process, dependent on lactate concentrations. Intracellular lactate concentration triggers HDAC6 to lactylate α-tubulin, a process dependent on its deacetylase activity. Additionally, the lactyltransferase activity may be conserved in HDAC family proteins. Our study reveals the primary role of HDAC6 in regulating α-tubulin lactylation, establishing a link between cell metabolism and cytoskeleton functions.


Asunto(s)
Citoesqueleto , Histona Desacetilasa 6 , Microtúbulos , Neuronas , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Animales , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Neuronas/metabolismo , Humanos , Ácido Láctico/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Ratones , Ratas , Proyección Neuronal/efectos de los fármacos , Células Cultivadas , Lisina/metabolismo
6.
Huan Jing Ke Xue ; 45(8): 4802-4811, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168697

RESUMEN

Soil heavy metal pollution poses a serious threat to food security, human health, and soil ecosystems. Based on 644 soil samples collected from a typical oasis located at the eastern margin of the Tarim Basin, a series of models, namely, multiple linear regression (LR), neural network (BP), random forest (RF), support vector machine (SVM), and radial basis function (RBF), were built to predict the soil heavy metal content. The optimal prediction result was obtained and utilized to analyze the spatial distribution features of heavy metal contamination and relevant health risks. The outcomes demonstrated that: ① The average Cd content in the study area was 0.14 mg·kg-1, which was 1.17 times the soil background value of Xinjiang, making it the primary factor of soil heavy metal contamination in the area. Additionally, the carcinogenicity risk coefficients of Cd for both adults and children were less than 10-4, indicating that there were no significant long-term health risks for humans in the area. ② The estimation accuracies of the five inversion models were compared, and the validation set of the RF model had an R2 value of 0.763 7, which was the highest among the five models. Additionally, the RMSE, MAE, and MBE of the RF model were the smallest among the five models. Therefore, the predicted values of the RF model were most consistent with the measured values of the soil Cd content. The predicted map of soil Cd distribution derived from the RF model coincided best with the interpolation map. ③ The RF model outperformed the other four models in predicting health risks associated with the soil Cd element for both adults and children, resulting in better prediction results. Comparatively, the predicted values of the LR model in the validation set varied greatly, leading to unreliable results. It was demonstrated that the RF was the best model for predicting soil Cd content and evaluating health risks in the study area, considering its superior generalization capability and anti-overfitting ability.


Asunto(s)
Cadmio , Monitoreo del Ambiente , Aprendizaje Automático , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , China , Monitoreo del Ambiente/métodos , Humanos , Máquina de Vectores de Soporte , Redes Neurales de la Computación , Suelo/química , Ecosistema , Modelos Lineales
8.
Angew Chem Int Ed Engl ; : e202411543, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115459

RESUMEN

Dual-atom catalysts (DACs) are promising for applications in electrochemical CO2 reduction due to the enhanced flexibility of the catalytic sites and the synergistic effect between dual atoms. However, precisely controlling the atomic distance and identifying the dual-atom configuration of DACs to optimize the catalytic performance remains a challenge. Here, the Ni and Fe atomic pairs were constructed on nitrogen-doped carbon support in three different configurations: NiFe-isolate, NiFe-N bridge, and NiFe-bonding. It was found that the NiFe-N bridge catalyst with NiN4 and FeN4 sharing two N atoms exhibited superior CO2 reduction activity and promising stability when compared to the NiFe-isolate and NiFe-bonding catalysts. A series of characterizations and density functional theory calculations suggested that the N-bridged NiFe sites with an appropriate distance between Ni and Fe atoms can exert a more pronounced synergy. It not only regulated the suitable adsorption strength for the *COOH intermediate but also promoted the desorption of *CO, thus accelerating the CO2 electroreduction to CO. This work provides an important implication for the enhancement of catalysis by the tailoring of the coordination structure of DACs, with the identification of distance effect between neighboring dual atoms.

9.
Heliyon ; 10(13): e33622, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091951

RESUMEN

Background: AIDS-related NK/T-cell lymphoma is a rare subtype of AIDS-related lymphomas, characterized by a poor prognosis and lack of standardized treatment protocols. To date, there have been no reported cases of AIDS-associated NK/T-cell lymphoma in remission followed by treatment-related acute myeloid leukemia (t-AML), where both the lymphoma and AML achieved remission and long-term survival through chemotherapy alone. Case presentation: We report a case of a patient diagnosed with AIDS-related extra-nodal NK/T-cell lymphoma (ENKTCL). The patient achieved complete remission after receiving six cycles of chemotherapy, local radiotherapy, and combination antiretroviral therapy (cART). Throughout the follow-up period, the patient continued cART treatment, maintaining an HIV-RNA level below the lower limit of detection. However, 70 months later, the patient developed new symptoms and was subsequently diagnosed with acute myeloid leukemia (AML) M4 subtype. Following the completion of 10 cycles of chemotherapy and ongoing cART, the patient achieved complete remission of AML, with an overall survival time exceeding 103 months from the initial ENKTCL diagnosis. Conclusions: This case highlights the effectiveness of chemotherapy combined with cART in the treatment of AIDS-associated NK/T-cell lymphoma and secondary treatment-related leukemia. This approach may serve as a viable option for patients who are not candidates for bone marrow transplantation. Furthermore, this case underscores the importance of long-term follow-up in the management of AIDS-associated malignancies.

10.
Adv Sci (Weinh) ; : e2407019, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158940

RESUMEN

Electrolyte plays crucial roles in electrochemical CO2 reduction reaction (e-CO2RR), yet how it affects the e-CO2RR performance still being unclarified. In this work, it is reported that Sn-Zn hybrid oxide enables excellent CO2-to-HCOO- conversion in KHCO3 with a HCOO- Faraday efficiency ≈89%, a yield rate ≈0.58 mmol cm-2 h-1 and a stability up to ≈60 h at -0.93 V, which are higher than those in NaHCO3 and K2SO4. Systematical characterizations unveil that the surface reconstruction on Sn-Zn greatly depends on the electrolyte using: the Sn-SnO2/ZnO, the ZnO encapsulated Sn-SnO2/ZnO and the Sn-SnO2/Zn-ZnO are reconstructed on the surface by KHCO3, NaHCO3 and K2SO4, respectively. The improved CO2-to-HCOO- performance in KHCO3 is highly attributed to the reconstructed Sn-SnO2/ZnO, which can enhance the charge transportation, promote the CO2 adsorption and optimize the adsorption configuration, accumulate the protons by enhancing water adsorption/cleavage and limit the hydrogen evolution. The findings may provide insightful understanding on the relationship between electrolyte and surface reconstruction in e-CO2RR and guide the design of novel electrocatalyst for effective CO2 reduction.

11.
Medicine (Baltimore) ; 103(34): e39373, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39183392

RESUMEN

Hepatic viral infections and breast cancer (BC) constitute major global health challenges, yet the interconnection between these hepatic infections and BC continues to be ambiguous. Conducting a comprehensive evaluation of the link between hepatitis virus infection and the incidence of BC and leveraging data from the National Health and Nutrition Examination Survey covering the period from 1999 to March 2022, we utilized logistic regression and subgroup analysis, among other methodologies, to execute a cross-sectional investigation. The univariate logistic regression analysis elucidates that individuals classified as non-Hispanic White exhibit a markedly higher incidence of BC at 2.620 (95% confidence interval [CI], 1.117-7.676; P = .045); moreover, advanced age at 1.063 (95% CI, 1.036-1.093; P < .001), elevated educational attainment at 1.962 (95% CI, 1.17-3.366; P = .012), and higher income levels at 2.835 (95% CI, 1.303-7.439; P = .017) emerge as significant predisposing factors for BC. In contrast, a greater number of live births significantly diminishes the risk of BC, reducing the incidence to 81.1% with each additional birth. Pertaining to hepatitis and vaccination status, our analysis distinctly demonstrates that only hepatitis B at 0.110 (95% CI, 0.018-0.353; P = .002) bears a significant inverse relationship with BC risk, suggesting a protective effect. The multivariate logistic regression analysis further reveals a negative association between hepatitis B infection and BC incidence, whereas hepatitis B vaccination shows a positive correlation with the disease incidence. After adjusting for all covariates, model 3 delineates odds ratios (95% CI) as follows: 0.14 (0.02-0.50; P = .009) and 1.92 (0.99-3.62; P = .046). Our investigation uncovers that within the general populace, there exists an inverse correlation between hepatitis B infection and BC incidence; in addition, the administration of the hepatitis B virus vaccine is potentially positively associated with the prevalence of BC.


Asunto(s)
Neoplasias de la Mama , Hepatitis B , Encuestas Nutricionales , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Incidencia , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Persona de Mediana Edad , Estados Unidos/epidemiología , Adulto , Estudios Transversales , Factores de Riesgo , Modelos Logísticos , Anciano
12.
Front Public Health ; 12: 1367061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947355

RESUMEN

Background and objective: Heavy metals, ubiquitous in the environment, pose a global public health concern. The correlation between these and diabetic kidney disease (DKD) remains unclear. Our objective was to explore the correlation between heavy metal exposures and the incidence of DKD. Methods: We analyzed data from the NHANES (2005-2020), using machine learning, and cross-sectional survey. Our study also involved a bidirectional two-sample Mendelian randomization (MR) analysis. Results: Machine learning reveals correlation coefficients of -0.5059 and - 0.6510 for urinary Ba and urinary Tl with DKD, respectively. Multifactorial logistic regression implicates urinary Ba, urinary Pb, blood Cd, and blood Pb as potential associates of DKD. When adjusted for all covariates, the odds ratios and 95% confidence intervals are 0.87 (0.78, 0.98) (p = 0.023), 0.70 (0.53, 0.92) (p = 0.012), 0.53 (0.34, 0.82) (p = 0.005), and 0.76 (0.64, 0.90) (p = 0.002) in order. Furthermore, multiplicative interactions between urinary Ba and urinary Sb, urinary Cd and urinary Co, urinary Cd and urinary Pb, and blood Cd and blood Hg might be present. Among the diabetic population, the OR of urinary Tl with DKD is a mere 0.10, with a 95%CI of (0.01, 0.74), urinary Co 0.73 (0.54, 0.98) in Model 3, and urinary Pb 0.72 (0.55, 0.95) in Model 2. Restricted Cubic Splines (RCS) indicate a linear linkage between blood Cd in the general population and urinary Co, urinary Pb, and urinary Tl with DKD among diabetics. An observable trend effect is present between urinary Pb and urinary Tl with DKD. MR analysis reveals odds ratios and 95% confidence intervals of 1.16 (1.03, 1.32) (p = 0.018) and 1.17 (1.00, 1.36) (p = 0.044) for blood Cd and blood Mn, respectively. Conclusion: In the general population, urinary Ba demonstrates a nonlinear inverse association with DKD, whereas in the diabetic population, urinary Tl displays a linear inverse relationship with DKD.


Asunto(s)
Nefropatías Diabéticas , Aprendizaje Automático , Análisis de la Aleatorización Mendeliana , Metales Pesados , Humanos , Estudios Transversales , Metales Pesados/orina , Metales Pesados/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Encuestas Nutricionales , Anciano
13.
Angew Chem Int Ed Engl ; 63(39): e202405371, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38965044

RESUMEN

Spillover of adsorbed species from one active site to another is a key step in heterogeneous catalysis. However, the factors controlling this step, particularly the spillover of polyatomic species, have rarely been studied. Herein, we investigate the spillover dynamics of H* and CH3* species on a single-atom alloy surface (Rh/Cu(111)) upon the dissociative chemisorption of methane (CH4), using molecular dynamics that considers both surface phonons and electron-hole pairs. These dynamical calculations are made possible by a high-dimensional potential energy surface machine learned from density functional theory data. Our results provide compelling evidence that the H* and CH3* can spill over on the metal surface at experimental temperatures and reveal novel dynamical features involving an internal motion during diffusion for CH3*. Increasing surface temperature has a minor effect on promoting spillover, as geminate recombinative desorption becomes more prevalent. However, the poisoning of the active site can be mitigated by the frequent gaseous molecular collisions that occur under ambient pressure in real-world catalysis, which transfer energy to the trapped adsorbates. Interestingly, the bulky CH3* exhibits a significant spillover advantage over the light H* due to its larger size, which facilitates energy acquisition. These insights help to advance our understanding of spillover in heterogeneous catalysis.

14.
Expert Opin Drug Saf ; : 1-13, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39010662

RESUMEN

BACKGROUND: Fluorouracil (5-FU) is widely used to treat metastatic colorectal cancer (mCRC), but real-world safety data is limited. Our study aimed to evaluate 5-FU's safety profile in a large mCRC population using the FAERS database. RESEARCH DESIGN AND METHODS: We conducted disproportionality analyses to identify adverse drug events associated with 5-FU use in mCRC patients from 2004 to 2023. Subgroup analyses, gender difference analyses, and logistic regression were also performed. RESULTS: We identified 1,458 reports with 5-FU as the primary suspected drug, with males accounting for 48.8% of reports. Gastrointestinal disorders were the most common adverse event (864 cases), while pregnancy-related conditions showed the strongest signal intensity (ROR = 2.97). We found 19 preferred terms with positive signals, including ischemic hepatitis (ROR = 59.32), blood iron increased (ROR = 59.32), and stress cardiomyopathy (ROR = 51.94). Males were more susceptible to weight loss and skin toxicity. Most adverse events occurred within the first month of 5-FU administration. CONCLUSION: Our study provides a comprehensive analysis of 5-FU's safety profile in mCRC patients, helping healthcare professionals mitigate risks in clinical practice.

15.
Regen Biomater ; 11: rbae087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055304

RESUMEN

The treatment of peripheral neuropathy resulting from diabetes primarily emphasizes neurotrophic medications. However, a growing body of clinical studies indicates that neuroinflammation plays a significant role in the pathogenesis of neuropathic pain. This has spurred active exploration of treatment strategies leveraging nanomedicine for diseases, aiming for superior therapeutic outcomes. In this context, we have developed biodegradable nanoparticles made of polylactic-co-glycolic acid, loaded with triptolide (pCel), designed to alleviate somatic cell neuropathic pain induced by diabetes. Treatment with pCel notably reduced levels of reactive oxygen species and apoptosis in vitro. Furthermore, the progression of streptozotocin-induced diabetes, characterized by elevated renal function indices (blood urea nitrogen, creatinine), liver function indices (bilirubin, alkaline phosphatase) and decreased levels of albumin and globulin, was mitigated following pCel administration. Importantly, oral treatment with pCel significantly inhibited mechanical allodynia and the activation of the sciatic glial cells in diabetic rats. These findings indicate that this synthetic, biodegradable nanomedicine exhibits excellent stability, biocompatibility and catalytic activity, making it a promising and innovative approach for the management of chronic pain conditions associated with diabetic neuropathy.

16.
J Oleo Sci ; 73(8): 1045-1055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085081

RESUMEN

Docosahexaenoic acid plays a crucial role in infant brain function, and the market demand of high-purity docosahexaenoic acid is continuously increasing. The availability of docosahexaenoic acid in natural fish oil is limited, prompting the exploration of alternative sources like microalgae. For algal oil, enzymatic ethanolysis is preferred to chemical methods because the former is milder and can avoid docosahexaenoic acid oxidation. However, enzymatic methods have generally low yield due to the poor substrate-specificity of lipase to long-chain polyunsaturated fatty acids, affecting the yield and purity of docosahexaenoic acid. Therefore, we developed an efficient process to produce high-purity docosahexaenoic acid ethyl ester from algal oil, by screening lipases, optimizing enzymatic ethanolysis and applying molecular distillation. Lipase UM1 was the best lipase to produce ethyl ester from algal oil with the highest ethyl ester yield (95.41%). Meanwhile, it was a catalyst for the reaction of long-chain polyunsaturated fatty acids with ethanol. The fatty acid docosahexaenoic acid conversion rates exceeded 90%. After molecular distillation, a final product containing 96.52% ethyl ester was obtained with a docosahexaenoic acid content up to 80.11%. Our findings provide an highly effective enzymatic method for the production of high-purity docosahexaenoic acid ethyl esters, with potential commercial applications.


Asunto(s)
Ácidos Docosahexaenoicos , Ésteres , Etanol , Lipasa , Ácidos Docosahexaenoicos/aislamiento & purificación , Ácidos Docosahexaenoicos/química , Lipasa/metabolismo , Lipasa/química , Ésteres/química , Etanol/química , Microalgas/química , Aceites de Pescado/química , Destilación/métodos , Esterificación , Biocatálisis
17.
Environ Sci Pollut Res Int ; 31(29): 42372-42387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874757

RESUMEN

Globally, the circular efficiency of biomass resources has become a priority due to the depletion and negative environmental impacts of fossil fuels. This study aimed to quantify the atmosphere-dependent combustion of Ganoderma lucidum (GL) biomass and its thermodynamic and kinetic parameters toward enhancing its circularity and transformability characteristics. The GL combustion occurred in the three stages of moisture removal, volatile release, and coke combustion. Combustion performance characteristics were more favorable in the N2/O2 atmosphere than in the CO2/O2 atmosphere under the same heating rates. The rising heating rate facilitated the release of volatiles. According to the model-free methods of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose, the activation energies essential for the primary reaction were 283.09 kJ/mol and 288.28 kJ/mol in the N2/O2 atmosphere and 233.09 kJ/mol and 235.64 kJ/mol in the CO2/O2 atmosphere. The gaseous products of the GL combustion included CH4, H2O, C = O, CO, CO2, NH3, C = C, and C-O(H). Ash prepared in both atmospheres exhibited a tendency for slag formation, with oxy-fuel combustion lowering its risk. This study thus provides a theoretical and practical basis for transforming GL residues into a sustainable energy source.


Asunto(s)
Biomasa , Reishi , Reishi/química , Atmósfera/química , Dióxido de Carbono/química , Dióxido de Carbono/análisis
18.
Nanoscale ; 16(26): 12577-12585, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38856916

RESUMEN

As a new soft electronic product, a flexible precontact sensor provides spatial position sensing ability. However, the properties of traditional polymer materials change in industrial environments with extreme temperatures, which can cause the sensor function to decline or even fail. In this study, we propose a flexible fiber sensor based on the capacitor principle, which achieves a stable spatial positioning function and is not affected by a wide range of temperature changes. The fiber element of the sensor is obtained through the deposition of a flexible Al2O3 ceramic coating onto the surface of a carbon nanotube fiber (CNTF) via atomic layer deposition (ALD) technology. Coatings of different thicknesses (100 nm, 200 nm, and 300 nm) show different colors. The temperature resistance and flame retardancy of Al2O3 keep the morphology of the composite fiber unaffected by flame or high temperatures. Even at extreme temperatures (-78 °C to 500 °C), the sensor's sensing ability exhibits excellent stability. In addition, the spatial perception of the fibers remained viable after repeated bending (10 000 times). We demonstrate the potential of the sensor to acquire position information during high-temperature industrial pipe docking.

19.
ACS Appl Mater Interfaces ; 16(27): 34850-34858, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38937961

RESUMEN

It was confirmed that the detrimental effect of SO42- on Li+ desorption and readsorption intensified with the increase of the SO42-/Cl- ratio, resulting in application limitations of aluminum-based adsorbent (Li/Al-LDHs) in sulfate-type brines. Based on the interlayer anion exchangeability of Li/Al-LDHs, a one-step interlayer restoration strategy was designed with the assistance of molecular dynamics to rapidly substitute the intercalated SO42- with preferentially desorbed Cl-, aiming to fundamentally address the damage to the cycling performance. The strategy effectiveness was verified by the restored adsorption and desorption capacities in various sulfate-type brines. Furthermore, enhanced lithium extraction processes for sulfate-type brines were established and showed universal applicability for complex brines with different compositions during fixed-bed cycles. By regulating the implementation frequency, the Li+ extraction efficiency was improved, in which the extraction amount per unit time could increase by more than 100% compared with the conventional process.

20.
Front Neurol ; 15: 1360511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715691

RESUMEN

Background: Cerebral vasospasm (CV) is a common complication of aneurysmal subarachnoid hemorrhage (aSAH), leading to increased morbidity and mortality rates. Endovascular therapy, particularly intra-arterial vasodilator infusion (IAVI), has emerged as a potential alternative treatment for CV. Methods: A systematic review and meta-analysis were conducted to compare the efficacy of endovascular therapy with standard treatment in patients with CV following aSAH. The primary outcomes assessed were in-hospital mortality, discharge favorable outcome, and follow-up favorable outcome. Secondary outcomes included major infarction on CT, ICU stay duration, and total hospital stay. Results: Regarding our primary outcomes of interest, patients undergoing intervention exhibited a significantly lower in-hospital mortality compared to the standard treatment group, with the intervention group having only half the mortality risk (RR = 0.49, 95% CI [0.29, 0.83], p = 0.008). However, there were no significant differences between the two groups in terms of discharge favorable outcome (RR = 0.99, 95% CI [0.68, 1.45], p = 0.963) and follow-up favorable outcome (RR = 1.09, 95% CI [0.86, 1.39], p = 0.485). Additionally, there was no significant difference in major infarction rates (RR = 0.79, 95% CI [0.34, 1.84], p = 0.588). It is important to note that patients undergoing endovascular treatment experienced longer stays in the ICU (MD = 6.07, 95% CI [1.03, 11.12], p = 0.018) and extended hospitalization (MD = 5.6, 95% CI [3.63, 7.56], p < 0.001). Subgroup analyses based on the mode of endovascular treatment further supported the benefits of IAVI in lowering in-hospital mortality (RR = 0.5, 95% CI [0.27, 0.91], p = 0.023). Conclusion: Endovascular therapy, particularly IAVI, holds promising potential in reducing in-hospital mortality for patients with CV following aSAH. However, it did not show significant improvement in long-term prognosis and functional recovery. Further research with larger sample sizes and randomized controlled trials is necessary to validate these findings and optimize the treatment strategy for cerebral vasospasm in aSAH patients. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42023451741.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA