Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1407512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040494

RESUMEN

Introduction: Rotator cuff tear (RCT) is a common shoulder injury impacting mobility and quality of life, while traditional surgeries often result in poor healing. Tissue engineering offers a promising solution, with poly (ε-caprolactone) (PCL) being favored due to its slow degradation, biocompatibility, and non-toxicity. However, PCL lacks sufficient compression resistance. Incorporating Mg, which promotes bone growth and has antibacterial effects, could enhance RCT repair. Methods: The Mg-incorporated PCL-based scaffolds were fabricated using a 3D printing technique. The scaffolds were incorporated with different percentages of Mg (0%, 5%, 10%, 15%, and 20%). The osteogenic activities and anti-inflammatory properties of the scaffolds were evaluated in vitro using human osteoblasts and macrophages. The tissue ingrowth and biocompatibility of the scaffolds were assessed in vivo using a rat model of RCT repair. The ability of the scaffolds to enhance macrophage polarization towards the M2 subtype and inhibit inflammation signaling activation was also investigated. Results: It was found that when incorporated with 10% Mg, PCL-based scaffolds exhibited the optimal bone repairing ability in vitro and in vivo. The in vitro experiments indicated that the successfully constructed 10 Mg/PCL scaffolds enhance osteogenic activities and anti-inflammatory properties. Besides, the in vivo studies demonstrated that 10 Mg/PCL scaffolds promoted tissue ingrowth and enhanced biocompatibility compared to the control PCL scaffolds. Furthermore, the 10 Mg/PCL scaffolds enhanced the macrophages' ability to polarize towards the M2 subtype and inhibited inflammation signaling activation. Discussion: These findings suggest that 3D-printed Mg-incorporated PCL scaffolds have the potential to improve RCT by enhancing osteogenesis, reducing inflammation, and promoting macrophage polarization. The incorporation of 10% Mg into PCL-based scaffolds provided the optimal combination of properties for RCT repair augmentation. This study highlights the potential of tissue engineering approaches in improving the outcomes of RCT repair and provides a foundation for future clinical applications.

2.
J Nutr Biochem ; 123: 109512, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907171

RESUMEN

Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.


Asunto(s)
Dieta Alta en Grasa , Leptina , Animales , Masculino , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética
3.
J Tissue Eng ; 14: 20417314231197604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674933

RESUMEN

Extracellular vesicle (EV) therapy recently had shown significant efficacy in various diseases. Serum starvation culture (SC) is one of the most widely used methods for collecting EVs. However, SC may cause inadvertent effects and eventually dampen the therapeutic potential of EVs. Therefore, we developed a novel method for EV collection, continuous nutrient supply culture (CC), which can provide an optimal condition for mesenchymal stem cells (MSCs) by continuously supplying essential nutrients to MSCs. By comparing with SC strategy, we revealed that CC could maintain CC-MSCs in a normal autophagy and apoptotic state, which reduced the shunting of EV precursors in cells and useless information material carried by EVs. In CC-MSCs, the expression levels of endosomal sorting complexes required for transport (ESCRT) and targeting GTPase27 (Rab27) were upregulated compared to those in SC-MSCs. Besides, we analyzed the membrane transport efficiency of EV formation, which demonstrated the CC strategy could promote the formation of EV precursors and the release of EVs. In addition, miRNA analysis revealed that CC-EVs were enriched with anti-chronic inflammatory factors, which could inhibit the nuclear factor kappa-B (NF-κB) pathway, mitigate chronic inflammation, and effectively repair skin photo-aging damage.

6.
BMC Neurosci ; 23(1): 54, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163017

RESUMEN

BACKGROUND: Exercise boosts the health of some brain parts, such as the hippocampus and hypothalamus. Several studies show that long-term exercise improves spatial learning and memory, enhances hypothalamic leptin sensitivity, and regulates energy balance. However, the effect of exercise on the hippocampus and hypothalamus is not fully understood. The study aimed to find epigenetic modifications or changes in gene expression of the hippocampus and hypothalamus due to exercise. METHODS: Male C57BL/6 mice were randomly divided into sedentary and exercise groups. All mice in the exercise group were subjected to treadmill exercise 5 days per week for 1 h each day. After the 12-week exercise intervention, the hippocampus and hypothalamus tissue were used for RNA-sequencing or molecular biology experiments. RESULTS: In both groups, numerous differentially expressed genes of the hippocampus (up-regulated: 53, down-regulated: 49) and hypothalamus (up-regulated: 24, down-regulated: 40) were observed. In the exercise group, increased level of N6-methyladenosine (m6A) was observed in the hippocampus and hypothalamus (p < 0.05). Furthermore, the fat mass and obesity-associated gene (FTO) of the hippocampus and hypothalamus were down-regulated in the exercise group (p < 0.001). In addition, the Fto co-expression genes of the mouse brain were studied and analyzed using database to determine the potential roles of exercise-downregulated FTO in the brain. CONCLUSION: The findings demonstrate that long-term exercise might elevates the levels of m6A-tagged transcripts in the hippocampus and hypothalamus via down-regulation of FTO. Hence, exercise might be an effective intervention for epigenetic modification.


Asunto(s)
Leptina , Animales , Epigénesis Genética , Hipocampo/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/metabolismo
7.
Regen Biomater ; 9: rbac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529048

RESUMEN

Successful wound healing depends on the reconstruction of proper tissue homeostasis, particularly in the posttraumatic inflammatory tissue microenvironment. Diabetes jeopardizes tissues' immune homeostasis in cutaneous wounds, causing persistent chronic inflammation and cytokine dysfunction. Previously, we developed an autologous regeneration factor (ARF) technology to extract the cytokine composite from autologous tissue to restore immune homeostasis and promote wound healing. However, treatment efficacy was significantly compromised in diabetic conditions. Therefore, we proposed that a combination of melatonin and ARF, which is beneficial for proper immune homeostasis reconstruction, could be an effective treatment for diabetic wounds. Our research showed that the utilization of melatonin-mediated ARF biogel (AM gel) promoted diabetic wound regeneration at a more rapid healing rate. RNA-Seq analysis showed that AM gel treatment could restore more favorable immune tissue homeostasis with unique inflammatory patterning as a result of the diminished intensity of acute and chronic inflammation. Currently, AM gel could be a novel and promising therapeutic strategy for diabetic wounds in clinical practice through favorable immune homeostatic reconstructions in the tissue microenvironment and proper posttraumatic inflammation patterning.

8.
Bioact Mater ; 9: 491-507, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820585

RESUMEN

The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) - osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a rat femoral bone defect, the PFE scaffold demonstrated early vascular infiltration and enhanced bone regeneration by microangiography (µ-AG) and micro-computational tomography (µ-CT). Based on the immunofluorescence studies, PFE mediated the endogenous angiogenesis and osteogenesis with a substantial number of type H vessels and osteoprogenitors. In addition, superior osseointegration was observed by a direct host bone-PCL interface, which was likely attributed to the formation of type H vessels. The bio-instructive microenvironment created by our innovative PFE scaffold made possible superior osseointegration and type H vessel-related bone regeneration. It could become an alternative solution of improving the osseointegration of bone substitutes with the help of induced type H vessels, which could compensate for the inherent biological inertness of synthetic polymers.

9.
Bioact Mater ; 10: 32-47, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34901527

RESUMEN

Regardless of the advancement of synthetic bone substitutes, allograft-derived bone substitutes still dominate in the orthopaedic circle in the treatments of bone diseases. Nevertheless, the stringent devitalization process jeopardizes their osseointegration with host bone and therefore prone to long-term failure. Hence, improving osseointegration and transplantation efficiency remains important. The alteration of bone tissue microenvironment (TME) to facilitate osseointegration has been generally recognized. However, the concept of exerting metal ionic cue in bone TME without compromising the mechanical properties of bone allograft is challenging. To address this concern, an interfacial tissue microenvironment with magnesium cationc cue was tailored onto the gamma-irradiated allograft bone using a customized magnesium-plasma surface treatment. The formation of the Mg cationic cue enriched interfacial tissue microenvironment on allograft bone was verified by the scanning ion-selective electrode technique. The cellular activities of human TERT-immortalized mesenchymal stem cells on the Mg-enriched grafts were notably upregulated. In the animal test, superior osseointegration between Mg-enriched graft and host bone was found, whereas poor integration was observed in the gamma-irradiated controls at 28 days post-operation. Furthermore, the bony in-growth appeared on magnesium-enriched allograft bone was significant higher. The mechanism possibly correlates to the up-regulation of integrin receptors in mesenchymal stem cells under modified bone TME that directly orchestrate the initial cell attachment and osteogenic differentiation of mesenchymal stem cells. Lastly, our findings demonstrate the significance of magnesium cation modified bone allograft that can potentially translate to various orthopaedic procedures requiring bone augmentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA