Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8047, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277621

RESUMEN

Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.


Asunto(s)
Proteínas 14-3-3 , Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Virulencia , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ADP-Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/patogenicidad , Magnaporthe/genética , Magnaporthe/metabolismo , Procesamiento Proteico-Postraduccional
2.
Chem Commun (Camb) ; 60(72): 9817-9820, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39171397

RESUMEN

An organophosphine-controlled diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated 2-((chromone-3-yl)methylene)-indandiones is reported. Key attributes of the methodology are the in situ generation of an allylic P-ylide and subsequent regio- and chemoselective intramolecular cyclization reactions that preferentially result in the aforementioned chromone adducts.

3.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955187

RESUMEN

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autoinmunidad , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Inmunidad de la Planta , Ubiquitina-Proteína Ligasas , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fusarium/inmunología , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulación de la Expresión Génica de las Plantas , Ubiquitinación , Proteínas Portadoras
4.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948792

RESUMEN

The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.

5.
Materials (Basel) ; 17(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38673261

RESUMEN

The poor performance of recycled concrete aggregate (RCA) leads to greater creep in recycled aggregate concrete (RAC) compared to natural aggregate concrete (NAC). To enhance the quality of RCA, this paper utilizes a 2% concentration of a nano-SiO2 (NS) solution for pre-soaking RCA. This study aims to replace natural aggregate (NA) with NS-modified recycled aggregate (SRCA) and investigate the creep and shrinkage properties of NS-modified recycled aggregate concrete (SRAC) at various SRCA replacement rates. Subsequently, the creep and shrinkage strains of NAC, SRAC, and RAC are simulated using the finite element method. Finally, a comparative analysis is conducted with the predicted creep and shrinkage strains from CEB-FIP, ACI, B3, and GL2000 models. The experimental results indicate that the creep and shrinkage deformation of SRAC increases with the SRCA replacement rate. Compared to NAC, the creep and shrinkage deformation of SRAC at replacement rates of 30%, 50%, 70%, and 100% increased by 2%, 7%, 13%, and 30%, respectively. However, when 100% of the natural aggregate is replaced with SRCA, the creep and shrinkage deformation decreases by 7% compared to RAC. Moreover, the CEB-FIP and ACI models can predict the creep and shrinkage deformation of concrete reasonably well.

6.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38453467

RESUMEN

Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.


Asunto(s)
Anticipación Psicológica , Ansiedad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Ansiedad/psicología , Ansiedad/fisiopatología , Adulto , Anticipación Psicológica/fisiología , Adulto Joven , Percepción del Dolor/fisiología , Dolor/psicología , Dolor/fisiopatología , Teorema de Bayes , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/fisiología , Placer/fisiología , Mapeo Encefálico
7.
Materials (Basel) ; 17(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38473651

RESUMEN

Recycled aggregate concrete (RAC) possesses different mechanical properties than ordinary concrete because of inherent faults in recycled aggregates (RAs), such as the old interfacial transition zone (ITZ). However, the application of nano-SiO2 presents an effective methodology to enhance the quality of RA. In this study, nano-SiO2-modified recycled aggregate (SRA) was used to replace natural aggregate (NA), and the stress-strain relationships and cyclic behavior of nano-SiO2-modified recycled aggregate concrete (SRAC) with different SRA replacement rates were investigated. After evaluating the skeleton curve of SRAC specimens, the existing constitutive models were compared. Additionally, the study also proposed a stress-strain model designed to predict the mechanical behavior of concrete in relation to the SRA replacement rate. The results show that compared with RAC, the axial compressive strength of SRAC specimens showed increases of 40.27%, 29.21%, 26.55%, 16.37%, and 8.41% at specific SRA replacement rates of 0%, 30%, 50%, 70%, and 100%, respectively. Moreover, the study found that the Guo model's calculated results can accurately predict the skeleton curves of SRAC specimens.

8.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320719

RESUMEN

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Neuroblastoma , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Interleucina-1beta/antagonistas & inhibidores , Interleucina-6 , Lipopolisacáridos/farmacología , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
Mater Today Bio ; 24: 100919, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298888

RESUMEN

Diabetes causes a loss of sensation in the skin, so diabetics are prone to burns when using heating devices. Diabetic scalded skin is often difficult to heal due to the microenvironment of high glucose, high oxidation, and low blood perfusion. The treatment of diabetic scald mainly focuses on three aspects: 1) promote the formation of the epithelium; 2) promote angiogenesis; and 3) maintain intracellular homeostasis. In response to these three major repair factors, we developed a cadherin-responsive hydrogel combined with FGF21 and dental pulp stem cells (DPSCs) to accelerate epithelial formation by recruiting cadherin to the epidermis and promoting the transformation of N cadherin to E cadherin; promoting angiogenesis to increase wound blood perfusion; regulating the stability of lysosomal and activating autophagy to maintain intracellular homeostasis in order to comprehensively advance the recovery of diabetic scald.

10.
ACS Omega ; 9(1): 1894-1903, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222643

RESUMEN

The present study was conducted to prepare and investigate large-area, high-sensitivity surface-enhanced Raman scattering (SERS) substrates. Organic/inorganic nanohybrid dispersants consisting of an amphiphilic triblock copolymer (hereafter referred to simply as "copolymer") and graphene oxide (GO) were used to stabilize the growth and size of gold nanoparticles (AuNPs). Ion-dipole forces were present between the AuNPs and copolymer dispersants, while the hydrogen bonds between GO and the copolymer prevented the aggregation of GO, thereby stabilizing the AuNP/GO nanohybrids. Transmission electron microscopy (TEM) revealed that the AuNPs had particle sizes of 25-35 nm and a relatively uniform size distribution. The AuNP/GO nanohybrids were deposited onto the glass substrate by using the solution drop-casting method and employed for SERS detection. The self-assembling properties of two-dimensional sheet-like GO led to a regular lamellar arrangement of AuNP/GO nanohybrids, which could be used for the preparation of large-area SERS substrates. Following removal of the copolymer by annealing at 300 °C for 2 h, measurements were obtained under scanning electron microscopy. The results confirmed that 2D GO nanosheets were capable of stabilizing AuNPs, with the final size reaching approximately 40 nm. These AuNPs were adsorbed on both sides of the GO nanosheets. Because the GO nanosheets were merely 5 nm-thick, a good three-dimensional hot-junction effect was generated along the z-axis of the AuNPs. Lastly, the prepared material was used for the SERS detection of rhodamine 6G (R6G), a commonly used highly fluorescent dye. An enhancement factor (EF) of up to 3.5 × 106 was achieved, and the limit of detection was approximately 10-10 M. Detection limits of 10-10 M and < 10-10 M were also observed with the detection of Direct Blue 200 and the biological molecule adenine. It is therefore evident that AuNP/copolymer/GO nanohybrids are large-area flexible SERS substrates that hold great potential in environmental monitoring and biological system detection applications.

11.
ACS Chem Neurosci ; 15(4): 724-734, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38290213

RESUMEN

Herbs themselves and various herbal medicines are great resources for discovering therapeutic drugs for various diseases, including Alzheimer's disease (AD), one of the common neurodegenerative diseases. Utilizing mouse primary cortical neurons and DiBAC4(3), a voltage-sensitive indicator, we have set up a drug screening system and identified an herbal extraction compound, paeonol, obtained from Paeonia lactiflora; this compound is able to ameliorate the abnormal depolarization induced by Aß42 oligomers. Our aim was to further find effective paeonol derivatives since paeonol has been previously studied. 6'-Methyl paeonol, one of the six paeonol derivatives surveyed, is able to inhibit the abnormal depolarization induced by Aß oligomers. Furthermore, 6'-methyl paeonol is able to alleviate the NMDA- and AMPA-induced depolarization. When a molecular mechanism was investigated, 6'-methyl paeonol was found to reverse the Aß-induced increase in ERK phosphorylation. At the animal level, mice injected with 6'-methyl paeonol showed little change in their basic physical parameters compared to the control mice. 6'-Methyl paeonol was able to ameliorate the impairment of memory and learning behavior in J20 mice, an AD mouse model, as measured by the Morris water maze. Thus, paeonol derivatives could provide a structural foundation for developing and designing an effective compound with promising clinical benefits.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Neuronas , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/toxicidad , Aprendizaje por Laberinto
12.
Nucleic Acids Res ; 52(4): 1661-1676, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38084912

RESUMEN

Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.


Asunto(s)
Azepinas , Receptor X de Pregnano , Triazoles , Azepinas/química , Azepinas/farmacología , Línea Celular Tumoral , Proliferación Celular , Citocromo P-450 CYP3A/genética , Proteínas Nucleares/metabolismo , Receptor X de Pregnano/química , Proteínas Proto-Oncogénicas c-myc/genética , Receptores Citoplasmáticos y Nucleares , Triazoles/química , Triazoles/farmacología , Humanos
13.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979582

RESUMEN

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
14.
Structure ; 31(12): 1545-1555.e9, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37729916

RESUMEN

The human nuclear receptor (NR) family of transcription factors contains 48 proteins that bind lipophilic molecules. Approved NR therapies have had immense success treating various diseases, but lack of selectivity has hindered efforts to therapeutically target the majority of NRs due to unpredictable off-target effects. The synthetic ligand T0901317 was originally discovered as a potent agonist of liver X receptors (LXRα/ß) but subsequently found to target additional NRs, with activation of pregnane X receptor (PXR) being as potent as that of LXRs. We previously showed that directed rigidity reduces PXR binding by T0901317 derivatives through unfavorable protein remodeling. Here, we use a similar approach to achieve selectivity for PXR over other T0901317-targeted NRs. One molecule, SJPYT-318, accomplishes selectivity by favorably utilizing PXR's flexible binding pocket and surprisingly binding in a new mode distinct from the parental T0901317. Our work provides a structure-guided framework to achieve NR selectivity from promiscuous compounds.


Asunto(s)
Receptores de Esteroides , Humanos , Receptor X de Pregnano , Receptores de Esteroides/química , Ligandos , Receptores Citoplasmáticos y Nucleares
15.
Anal Chem ; 95(38): 14341-14349, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37715702

RESUMEN

Reporter gene assays are essential for high-throughput analysis, such as drug screening or determining downstream signaling activation/inhibition. However, use of this technology has been hampered by the high cost of the substrate (e.g., d-Luciferin (d-Luc)) in the most common firefly luciferase (FLuc) reporter gene assay. Although alternate luciferase is available worldwide, its substrate has remained expensive, and a more affordable option is still in demand. Here, we present a membrane-tethered horseradish peroxidase (mHRP), a new reporter system composed of a cell membrane expressing HRP that can preserve its enzymatic function on the cell surface, facilitates contact with HRP substrates (e.g., ABTS and TMB), and avoids the cell lysis process and the use of the high-priced luciferase substrate. An evaluation of the light signal sensitivity of mHRP compared to FLuc showed that both had comparable signal sensitivity. We also identified an extended substrate half-life of more than 5-fold that of d-Luc. Of note, this strategy provided a more stable detection signal, and the cell lysis process is not mandatory. Furthermore, with this strategy, we decreased the total amount of time taken for analysis and increased the time of detection limit of the reporter assay. Pricing analysis showed a one-third to one twenty-eighth price drop per single test of reporter assay. Given the convenience and stability of the mHRP reporter system, we believe that our strategy is suitable for use as an alternative to the luciferase reporter assay.


Asunto(s)
Bioensayo , Perfilación de la Expresión Génica , Membranas , Membrana Celular , Peroxidasa de Rábano Silvestre , Luciferasas de Luciérnaga/genética
16.
Heliyon ; 9(8): e18776, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560633

RESUMEN

Recently GeSe has developed as a promising light harvesting material by enjoying to its optical and electrical features as well as earth-abundant and low-toxic constituent elements. Nevertheless, the power conversion efficiency of GeSe-based solar cells yet lags far behind the Shockley-Queisser limit. In this work, we systematically designed, simulated and analyzed the highly efficient GeSe thin-film solar cells by SCAPS-1D. The influence of thickness and defect density of light harvest material, GeSe/CdS interface defect density, electron transport layer (ETL), electrode work function and hole transport layer (HTL) on the device output are carefully analyzed. By optimizing the parameters (thickness, defect, concentration, work function, ETL and HTL), an impressive PCE of 17.98% is delivered along with Jsc of 37.11 mA/cm2, FF of 75.53%, Voc of 0.61 V. This work offers theoretical guidance for the design of highly efficient GeSe thin film solar cells.

17.
Aging (Albany NY) ; 15(16): 8061-8089, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578928

RESUMEN

Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology. In this report, we showed that coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 reduced the expression of major histocompatibility complex-II, NLR family pyrin domain containing (NLRP) 3, caspase-1, inducible nitric oxide synthase, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in α-synuclein-activated mouse BV-2 microglia. Release of pro-inflammatory mediators including nitric oxide, IL-1ß, IL-6 and TNF-α was also mitigated. In BE(2)-M17 cells expressing A53T α-synuclein aggregates, LM-021 and NC009-1 reduced α-synuclein aggregation, neuroinflammation, oxidative stress and apoptosis, and promoted neurite outgrowth. These protective effects were mediated by downregulating NLRP1, IL-1ß and IL-6, and their downstream pathways including nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription (STAT) 1, and Janus kinase 2 (JAK2)/STAT3. The study results indicate LM-021 and NC009-1 as potential new drug candidates for PD.


Asunto(s)
Chalconas , Enfermedad de Parkinson , Ratones , Animales , alfa-Sinucleína/metabolismo , Chalconas/farmacología , Interleucina-6/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Indoles/farmacología , FN-kappa B/metabolismo , Enfermedad de Parkinson/metabolismo , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cumarinas/farmacología , Lipopolisacáridos/farmacología
18.
Virus Res ; 329: 199092, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965673

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes severe neurological disorders, such as microcephaly in fetuses. Most recently, an outbreak of ZIKV started in Brazil in 2015. To date, no therapeutic agents have been approved to treat ZIKV infection in the clinic. Here, we screened a small molecule inhibitor that can inhibit the function of ZIKV non-structural protein 2B (NS2B)-NS3 protease (ZIKV NS2B-NS3 protease), thereby interfering with viral replication and spread. First, we identified the half maximal inhibitory concentration (IC50) of compound 3 (14.01 µM), 8 (6.85 µM), and 9 (14.2 µM) and confirmed that they are all non-competitive inhibitors. In addition, we have used the blind molecular docking method to simulate the inhibition area of three non-competitive inhibitors (compound 3, 8, and 9) with the ZIKV NS2B-NS3 protease. The results indicated that the four allosteric binding residues (Gln139, Trp148, Leu150, and Val220) could form hydrogen bonds or non-bonding interactions most frequently with the three compounds. The interaction might induce the reaction center conformation change of NS2B-NS3 protease to reduce catalyzed efficiency. The concentration of compounds required to reduce cell viability by 50% (CC50), and the concentration of compounds required to inhibit virus-induced cytopathic effect by 50% (EC50) of three potential compounds are >200 µM, 2.15 µM (compound 3), > 200 µM, 0.52 µM (compound 8) and 61.48 µM, 3.52 µM (compound 9), and Temoporfin are 61.05 µM, 2 µM, respectively. To select candidate compounds for further animal experiments, we analyzed the selectivity index (SI) of compound 3 (93.02), 8 (384.61), 9 (17.46), and Temoporfin (30.53, FDA-approved drug against cancer). Compound 8 has the highest SI value. Therefore, compound 8 was selected for verification in animal models. In vivo, compound 8 significantly delayed ZIKV-induced lethality and illness symptoms and decreased ZIKV-induced weight loss in a ZIKV-infected suckling mouse model. We conclude that compound 8 is worth further investigation for use as a potential future therapeutic agent against ZIKV infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Ratones , Virus Zika/fisiología , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales/química , Antivirales/uso terapéutico , Inhibidores Enzimáticos/metabolismo , Replicación Viral , Serina Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo
19.
Biomolecules ; 13(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36830589

RESUMEN

Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity. In this study, eight compounds were evaluated for the potential of inhibiting Tau misfolding in human neuroblastoma SH-SY5Y cells expressing the pro-aggregator Tau folding reporter (ΔK280 TauRD-DsRed). Among them, coumarin derivative ZN-015 and quinoline derivatives VB-030 and VB-037 displayed chemical chaperone activity to reduce ΔK280 TauRD aggregation and promote neurite outgrowth. Studies of TRKB signaling revealed that ZN-015, VB-030 and VB-037 treatments significantly increased phosphorylation of TRKB and downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase 1/2 (ERK) and AKT serine/threonine kinase (AKT), to activate ribosomal S6 kinase (RSK) and cAMP response element-binding protein (CREB). Subsequently, p-CREB enhanced the transcription of pro-survival BDNF and BCL2 apoptosis regulator (BCL2), accompanied with reduced expression of anti-survival BCL2-associated X protein (BAX) in ΔK280 TauRD-DsRed-expressing cells. The neurite outgrowth promotion effect of ZN-015, VB-030 and VB-037 was counteracted by a RNA interference-mediated knockdown of TRKB, suggesting the role of these compounds acting as TRKB agonists. Tryptophan fluorescence quenching analysis showed that ZN-015, VB-030 and VB-037 interacted directly with a Pichia pastoris-expressed TRKB extracellular domain, indirectly supporting the role through TRKB signaling. The results of up-regulation in TRKB signaling open up the therapeutic potentials of ZN-015, VB-030 and VB-037 for AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Proto-Oncogénicas c-akt , Neuroblastoma/metabolismo , Proteínas tau/metabolismo , Receptor trkB/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2
20.
Proc Natl Acad Sci U S A ; 120(10): e2217804120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848571

RESUMEN

Ligand-binding promiscuity in detoxification systems protects the body from toxicological harm but is a roadblock to drug development due to the difficulty in optimizing small molecules to both retain target potency and avoid metabolic events. Immense effort is invested in evaluating metabolism of molecules to develop safer, more effective treatments, but engineering specificity into or out of promiscuous proteins and their ligands is a challenging task. To better understand the promiscuous nature of detoxification networks, we have used X-ray crystallography to characterize a structural feature of pregnane X receptor (PXR), a nuclear receptor that is activated by diverse molecules (with different structures and sizes) to up-regulate transcription of drug metabolism genes. We found that large ligands expand PXR's ligand-binding pocket, and the ligand-induced expansion occurs through a specific unfavorable compound-protein clash that likely contributes to reduced binding affinity. Removing the clash by compound modification resulted in more favorable binding modes with significantly enhanced binding affinity. We then engineered the unfavorable ligand-protein clash into a potent, small PXR ligand, resulting in marked reduction in PXR binding and activation. Structural analysis showed that PXR is remodeled, and the modified ligands reposition in the binding pocket to avoid clashes, but the conformational changes result in less favorable binding modes. Thus, ligand-induced binding pocket expansion increases ligand-binding potential of PXR but is an unfavorable event; therefore, drug candidates can be engineered to expand PXR's ligand-binding pocket and reduce their safety liability due to PXR binding.


Asunto(s)
Desarrollo de Medicamentos , Ingeniería , Ligandos , Cristalografía por Rayos X , Psicoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA