Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
2.
Nat Med ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824244

RESUMEN

Inhibition of histone lysine acetyltransferases (KATs) KAT6A and KAT6B has shown antitumor activity in estrogen receptor-positive (ER+) breast cancer preclinical models. PF-07248144 is a selective catalytic inhibitor of KAT6A and KAT6B. In the present study, we report the safety, pharmacokinetics (PK), pharmacodynamics, efficacy and biomarker results from the first-in-human, phase 1 dose escalation and dose expansion study (n = 107) of PF-07248144 monotherapy and fulvestrant combination in heavily pretreated ER+ human epidermal growth factor receptor-negative (HER2-) metastatic breast cancer (mBC). The primary objectives of assessing the safety and tolerability and determining the recommended dose for expansion of PF-07248144, as monotherapy and in combination with fulvestrant, were met. Secondary endpoints included characterization of PK and evaluation of antitumor activity, including objective response rate (ORR) and progression-free survival (PFS). Common treatment-related adverse events (any grade; grades 3-4) included dysgeusia (83.2%, 0%), neutropenia (59.8%, 35.5%) and anemia (48.6%, 13.1%). Exposure was approximately dose proportional. Antitumor activity was observed as monotherapy. For the PF-07248144-fulvestrant combination (n = 43), the ORR (95% confidence interval (CI)) was 30.2% (95% CI = 17.2-46.1%) and the median PFS was 10.7 (5.3-not evaluable) months. PF-07248144 demonstrated a tolerable safety profile and durable antitumor activity in heavily pretreated ER+HER2- mBC. These findings establish KAT6A and KAT6B as druggable cancer targets, provide clinical proof of concept and reveal a potential avenue to treat mBC. clinicaltrial.gov registration: NCT04606446 .

3.
Growth Factors ; 42(2): 49-61, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299881

RESUMEN

Breast cancer represents a collection of pathologies with different molecular subtypes, histopathology, risk factors, clinical behavior, and responses to treatment. "Basal-like" breast cancers predominantly lack the receptors for estrogen and progesterone (ER/PR), lack amplification of human epidermal growth factor receptor 2 (HER2) but account for 10-15% of all breast cancers, are largely insensitive to targeted treatment and represent a disproportionate number of metastatic cases and deaths. Analysis of interleukin (IL)-3 and the IL-3 receptor subunits (IL-3RA + CSF2RB) reveals elevated expression in predominantly the basal-like group. Further analysis suggests that IL-3 itself, but not the IL-3 receptor subunits, associates with poor patient outcome. Histology on patient-derived xenografts supports the notion that breast cancer cells are a significant source of IL-3 that may promote disease progression. Taken together, these observations suggest that IL-3 may be a useful marker in solid tumors, particularly triple negative breast cancer, and warrants further investigation into its contribution to disease pathogenesis.


Asunto(s)
Neoplasias de la Mama , Interleucina-3 , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Interleucina-3/metabolismo , Animales , Pronóstico , Ratones , Línea Celular Tumoral
4.
Nat Cell Biol ; 26(1): 138-152, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38216737

RESUMEN

Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/prevención & control , Mastectomía , Mutación , Proteína BRCA2/genética , Carcinogénesis , Transformación Celular Neoplásica , Proteína BRCA1/genética
5.
Cell Genom ; 3(11): 100424, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020976

RESUMEN

Although lineage-specific genes have been identified in the mammary gland, little is known about the contribution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin landscape of the three major epithelial subsets through integration of long- and short-range chromatin interactions, accessibility, histone modifications, and gene expression. While basal genes display exquisite lineage specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells. Cell specificity in luminal progenitors is largely mediated through extensive chromatin interactions with super-enhancers in gene-body regions in addition to interactions with polycomb silencer elements. Moreover, lineage-specific transcription factors appear to be controlled through cell-specific chromatin interactivity. Finally, chromatin accessibility rather than interactivity emerged as a defining feature of the activation of quiescent basal stem cells. This work provides a comprehensive resource for understanding the role of higher-order chromatin interactions in cell-fate specification and differentiation in the adult mouse mammary gland.

6.
NPJ Breast Cancer ; 9(1): 68, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582853

RESUMEN

Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation. Combinations with a STING agonist resulted in further improved durable tumour regression and significant improvements in survival outcomes in murine tumour models of BRCA1/2 wild-type TNBC. In addition, we have identified baseline tumour-infiltrating lymphocyte (TIL) levels as a potential predictive biomarker of response to PARPi, WEE1i and immunotherapies in BRCA1/2 wild-type TNBC.

7.
NPJ Breast Cancer ; 9(1): 37, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173335

RESUMEN

We assessed the PREDICT v 2.2 for prognosis of breast cancer patients with pathogenic germline BRCA1 and BRCA2 variants, using follow-up data from 5453 BRCA1/2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC). PREDICT for estrogen receptor (ER)-negative breast cancer had modest discrimination for BRCA1 carrier patients overall (Gönen & Heller unbiased concordance 0.65 in CIMBA, 0.64 in BCAC), but it distinguished clearly the high-mortality group from lower risk categories. In an analysis of low to high risk categories by PREDICT score percentiles, the observed mortality was consistently lower than the expected mortality, but the confidence intervals always included the calibration slope. Altogether, our results encourage the use of the PREDICT ER-negative model in management of breast cancer patients with germline BRCA1 variants. For the PREDICT ER-positive model, the discrimination was slightly lower in BRCA2 variant carriers (concordance 0.60 in CIMBA, 0.65 in BCAC). Especially, inclusion of the tumor grade distorted the prognostic estimates. The breast cancer mortality of BRCA2 carriers was underestimated at the low end of the PREDICT score distribution, whereas at the high end, the mortality was overestimated. These data suggest that BRCA2 status should also be taken into consideration with tumor characteristics, when estimating the prognosis of ER-positive breast cancer patients.

8.
Med J Aust ; 218(8): 368-373, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005005

RESUMEN

OBJECTIVE: To determine the feasibility of universal genetic testing of women with newly diagnosed breast cancer, to estimate the incidence of pathogenic gene variants and their impact on patient management, and to evaluate patient and clinician acceptance of universal testing. DESIGN, SETTING, PARTICIPANTS: Prospective study of women with invasive or high grade in situ breast cancer and unknown germline status discussed at the Parkville Breast Service (Melbourne) multidisciplinary team meeting. Women were recruited to the pilot (12 June 2020 - 22 March 2021) and expansion phases (17 October 2021 - 8 November 2022) of the Mutational Assessment of newly diagnosed breast cancer using Germline and tumour genomICs (MAGIC) study. MAIN OUTCOME MEASURES: Germline testing by DNA sequencing, filtered for nineteen hereditary breast and ovarian cancer genes that could be classified as actionable; only pathogenic variants were reported. Surveys before and after genetic testing assessed pilot phase participants' perceptions of genetic testing, and psychological distress and cancer-specific worry. A separate survey assessed clinicians' views on universal testing. RESULTS: Pathogenic germline variants were identified in 31 of 474 expanded study phase participants (6.5%), including 28 of 429 women with invasive breast cancer (6.5%). Eighteen of the 31 did not meet current genetic testing eligibility guidelines (probability of a germline pathogenic variant ≥ 10%, based on CanRisk, or Manchester score ≥ 15). Clinical management was changed for 24 of 31 women after identification of a pathogenic variant. Including 68 further women who underwent genetic testing outside the study, 44 of 542 women carried pathogenic variants (8.1%). Acceptance of universal testing was high among both patients (90 of 103, 87%) and clinicians; no decision regret or adverse impact on psychological distress or cancer-specific worry were reported. CONCLUSION: Universal genetic testing following the diagnosis of breast cancer detects clinically significant germline pathogenic variants that might otherwise be missed because of testing guidelines. Routine testing and reporting of pathogenic variants is feasible and acceptable for both patients and clinicians.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Grupo de Atención al Paciente
9.
Cell ; 186(8): 1708-1728, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36931265

RESUMEN

Breast cancer remains a leading cause of cancer-related mortality in women, reflecting profound disease heterogeneity, metastasis, and therapeutic resistance. Over the last decade, genomic and transcriptomic data have been integrated on an unprecedented scale and revealed distinct cancer subtypes, critical molecular drivers, clonal evolutionary trajectories, and prognostic signatures. Furthermore, multi-dimensional integration of high-resolution single-cell and spatial technologies has highlighted the importance of the entire breast cancer ecosystem and the presence of distinct cellular "neighborhoods." Clinically, a plethora of new targeted therapies has emerged, now being rapidly incorporated into routine care. Resistance to therapy, however, remains a crucial challenge for the field.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Perfilación de la Expresión Génica , Genómica , Transcriptoma , Resistencia a Antineoplásicos
10.
Blood Adv ; 7(12): 2733-2745, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-36521105

RESUMEN

Venetoclax is an effective treatment for certain blood cancers, such as chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). However, most patients relapse while on venetoclax and further treatment options are limited. Combining venetoclax with immunotherapies is an attractive approach; however, a detailed understanding of how venetoclax treatment impacts normal immune cells in patients is lacking. In this study, we performed deep profiling of peripheral blood (PB) cells from patients with CLL and AML before and after short-term treatment with venetoclax using mass cytometry (cytometry by time of flight) and found no impact on the concentrations of key T-cell subsets or their expression of checkpoint molecules. We also analyzed PB from patients with breast cancer receiving venetoclax long-term using a single-cell multiomics approach (cellular indexing of transcriptomes and epitopes by sequencing) and functional assays. We found significant depletion of B-cell populations with low expression of MCL-1 relative to other immune cells, attended by extensive transcriptomic changes. By contrast, there was less impact on circulating T cells and natural killer (NK) cells, with no changes in their subset composition, transcriptome, or function following venetoclax treatment. Our data indicate that venetoclax has minimal impact on circulating T or NK cells, supporting the rationale of combining this BH3 mimetic drug with cancer immunotherapies for more durable antitumor responses.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia Mieloide Aguda , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Células Asesinas Naturales , Leucemia Mieloide Aguda/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico
11.
Clin Cancer Res ; 28(15): 3256-3267, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35583555

RESUMEN

PURPOSE: Despite promising activity in hematopoietic malignancies, efficacy of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax in solid tumors is unknown. We report the prespecified VERONICA primary results, a randomized phase II clinical trial evaluating venetoclax and fulvestrant in estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer, post-cyclin-dependent kinase (CDK) 4/6 inhibitor progression. PATIENTS AND METHODS: Pre-/postmenopausal females ≥18 years were randomized 1:1 to venetoclax (800 mg orally daily) plus fulvestrant (500 mg intramuscular; cycle 1: days 1 and 15; subsequent 28-day cycles: day 1) or fulvestrant alone. The primary endpoint was clinical benefit rate (CBR); secondary endpoints were progression-free survival (PFS), overall survival, and safety. Exploratory biomarker analyses included BCL2 and BCL extra-large (BCLXL) tumor expression, and PIK3CA circulating tumor DNA mutational status. RESULTS: At primary analysis (cutoff: August 5, 2020; n = 103), venetoclax did not significantly improve CBR [venetoclax plus fulvestrant: 11.8% (n = 6/51; 95% confidence interval (CI), 4.44-23.87); fulvestrant: 13.7% (7/51; 5.70-26.26); risk difference -1.96% (95% CI, -16.86 to 12.94)]. Median PFS was 2.69 months (95% CI, 1.94-3.71) with venetoclax plus fulvestrant versus 1.94 months (1.84-3.55) with fulvestrant (stratified HR, 0.94; 95% CI, 0.61-1.45; P = 0.7853). Overall survival data were not mature. A nonsignificant improvement of CBR and PFS was observed in patients whose tumors had strong BCL2 expression (IHC 3+), a BCL2/BCLXL Histoscore ratio ≥1, or PIK3CA-wild-type status. CONCLUSIONS: Our findings do not indicate clinical utility for venetoclax plus fulvestrant in endocrine therapy-resistant, CDK4/6 inhibitor-refractory metastatic breast tumors, but suggest possible increased dependence on BCLXL in this setting.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Proteínas Quinasas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes , Fosfatidilinositol 3-Quinasa Clase I/genética , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Fulvestrant/uso terapéutico , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2 , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Sulfonamidas
12.
Sci Data ; 9(1): 96, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322042

RESUMEN

Breast cancer is a common and highly heterogeneous disease. Understanding cellular diversity in the mammary gland and its surrounding micro-environment across different states can provide insight into cancer development in the human breast. Recently, we published a large-scale single-cell RNA expression atlas of the human breast spanning normal, preneoplastic and tumorigenic states. Single-cell expression profiles of nearly 430,000 cells were obtained from 69 distinct surgical tissue specimens from 55 patients. This article extends the study by providing quality filtering thresholds, downstream processed R data objects, complete cell annotation and R code to reproduce all the analyses. Data quality assessment measures are presented and details are provided for all the bioinformatic analyses that produced results described in the study.


Asunto(s)
Neoplasias de la Mama , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Neoplasias de la Mama/genética , Biología Computacional , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Microambiente Tumoral , Secuenciación del Exoma
13.
Future Oncol ; 18(15): 1805-1816, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35187951

RESUMEN

The addition of a CDK4/6 inhibitor to endocrine therapy improves progression-free and overall survival in women with metastatic estrogen receptor-positive breast cancer. In that setting, CDK4/6 inhibitors induce a potent cell-cycle arrest (which may be accompanied by tumor senescence) but fail to induce apoptotic cell death. Venetoclax is a potent inhibitor of BCL2, a pro-survival protein overexpressed in the majority of estrogen receptor-positive cancers. Pre-clinical findings indicate that venetoclax augments tumor response to the CDK4/6 inhibitor palbociclib by triggering apoptosis, including in senescent cells. The PALVEN phase Ib trial will further examine this finding. The primary objective is to identify the maximum tolerated dose and determine the recommended phase II dose for palbociclib, letrozole and venetoclax combination therapy. Clinical Trial Registration: NCT03900884 (ClinicalTrials.gov).


The current 'gold standard' treatment for estrogen receptor-positive, HER2-negative metastatic breast cancer is endocrine therapy with a CDK4/6 inhibitor. This combination improves tumor response and patient outcomes, primarily by reducing tumor cell growth. Paradoxically, less killing of tumor cells is observed in the presence of a CDK4/6 inhibitor. The authors hypothesize that co-treatment with venetoclax, an inhibitor of the BCL2 survival protein, will help trigger tumor death, thereby further improving tumor responses and patient outcomes. As a first step, combination therapy comprising letrozole, palbociclib and venetoclax will be tested in a phase I trial to identify the recommended doses for subsequent studies.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes , Ensayos Clínicos Fase I como Asunto , Femenino , Humanos , Letrozol/uso terapéutico , Piperazinas , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Piridinas , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Sulfonamidas
14.
Mol Oncol ; 16(5): 1119-1131, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35000262

RESUMEN

Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome-wide CRISPR/Cas9 screen in Trp53+/- heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof-of-concept genes Pten, Nf1, and Trp53 itself. Ex vivo editing of primary mammary epithelial organoids was performed to further interrogate the roles of Axin1 and Prkar1a. Increased proliferation and profound changes in mammary organoid morphology were observed for Axin1/Trp53 and Prkar1a/Trp53 double mutants compared to Pten/Trp53 double mutants. Furthermore, direct in vivo genome editing via intraductal injection of lentiviruses engineered to express dual short-guide RNAs revealed that mutagenesis of Trp53 and either Prkar1a, Axin1, or Pten markedly accelerated tumor development compared to Trp53-only mutants. This proof-of-principle study highlights the application of in vivo CRISPR/Cas9 editing for uncovering cooperativity between defects in tumor suppressor genes that elicit mammary tumorigenesis.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Transformación Celular Neoplásica/genética , Genes Supresores de Tumor , Humanos , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
Nat Commun ; 12(1): 6920, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836954

RESUMEN

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Asunto(s)
Médula Ósea , Neoplasias Óseas , Neoplasias de la Mama , Neoplasias Mamarias Animales , Metástasis de la Neoplasia , Microambiente Tumoral , Animales , Médula Ósea/diagnóstico por imagen , Médula Ósea/cirugía , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/cirugía , Huesos/diagnóstico por imagen , Huesos/cirugía , Neoplasias de la Mama/cirugía , Progresión de la Enfermedad , Factor Estimulante de Colonias de Granulocitos , Humanos , Imagenología Tridimensional , Ratones , Metástasis de la Neoplasia/diagnóstico por imagen , Metástasis de la Neoplasia/terapia , Neoplasias Primarias Secundarias , Receptores del Factor Estimulante de Colonias
17.
Breast Cancer Res ; 23(1): 69, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187545

RESUMEN

BACKGROUND: Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. METHODS: The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. RESULTS: The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. CONCLUSIONS: This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Transcriptoma , Animales , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Células Epiteliales/citología , Glándulas Mamarias Animales/citología , Ratones , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo
18.
EMBO J ; 40(11): e107333, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950524

RESUMEN

To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1+/- tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatment-naive primary tumors, including estrogen receptor (ER)+ , HER2+ , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1+/- tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8+ T cells characterized triple-negative and HER2+ cancers but not ER+ tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER+ tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a high-resolution map of cell diversity in normal and cancerous human breast.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Glándulas Mamarias Humanas/metabolismo , Análisis de la Célula Individual , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/patología , RNA-Seq , Microambiente Tumoral
19.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712556

RESUMEN

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Asunto(s)
Antimitóticos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Animales , Antimitóticos/farmacocinética , Antimitóticos/toxicidad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Mitosis/efectos de los fármacos , Neoplasias/patología , Células PC-3 , Ratas Sprague-Dawley , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Protoc ; 16(4): 1907-1935, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33627843

RESUMEN

Multiphoton intravital imaging is essential for understanding cellular behavior and function in vivo. The adipose-rich environment of the mammary gland poses a unique challenge to in vivo microscopy due to light scattering that impedes high-resolution imaging. Here we provide a protocol for high-quality, six-color 3D intravital imaging of regions across the entire mouse mammary gland and associated tissues for several hours while maintaining tissue access for microdissection and labeling. An incision at the ventral midline and along the right hind leg creates a skin flap that is then secured to a raised platform skin side down. This allows for fluorescence-guided microdissection of connective tissue to provide unimpeded imaging of mammary ducts. A sealed imaging chamber over the skin flap creates a stable environment while maintaining access to large tissue regions for imaging with an upright microscope. We provide a strategy for imaging single cells and the tissue microenvironment utilizing multicolor Confetti lineage-tracing and additional dyes using custom-designed filters and sequential excitation with dual multiphoton lasers. Furthermore, we describe a strategy for simultaneous imaging and photomanipulation of single cells using the Olympus SIM scanner and provide steps for 3D video processing, visualization and high-dimensional analysis of single-cell behavior. We then provide steps for multiplexing intravital imaging with fixation, immunostaining, tissue clearing and 3D confocal imaging to associate cell behavior with protein expression. The skin-flap surgery and chamber preparation take 1.5 h, followed by up to 12 h of imaging. Applications range from basic filming in 1 d to 5 d for multiplexing and complex analysis.


Asunto(s)
Microscopía Intravital/métodos , Glándulas Mamarias Animales/citología , Análisis de la Célula Individual , Anestesia , Animales , Células Epiteliales/citología , Femenino , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Glándulas Mamarias Animales/cirugía , Ratones Endogámicos C57BL , Ratones Transgénicos , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA