Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Struct Biol ; 8(11): 958-62, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11685242

RESUMEN

The [PSI(+)] factor of Saccharomyces cerevisiae is a protein-based genetic element (prion) comprised of a heritable altered conformation of the cytosolic translation termination factor Sup35p. In vitro, the prion-determining region (NM) of Sup35p undergoes conformational conversion from a highly flexible soluble state to structured amyloid fibers, with a rate that is greatly accelerated by preformed NM fiber nuclei. Nucleated conformational conversion is the molecular basis of the genetic inheritance of [PSI(+)] and provides a new model for studying amyloidogenesis. Here we investigate the importance of structure and structural flexibility in soluble NM. Elevated temperatures, chemical chaperones and certain mutations in NM increase or change its structural content and inhibit or enhance nucleated conformational conversion. We propose that the structural flexibility of NM is particularly suited to allowing heritable protein-based changes in cellular behavior.


Asunto(s)
Amiloidosis , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Priones/química , Priones/metabolismo , Saccharomyces cerevisiae , Amiloidosis/genética , Proteínas Fúngicas/genética , Chaperonas Moleculares/genética , Mutación/genética , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Concentración Osmolar , Factores de Terminación de Péptidos , Docilidad , Priones/genética , Biosíntesis de Proteínas , Desnaturalización Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Secuencias Repetitivas de Aminoácido/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidad , Temperatura
2.
Biochem Soc Symp ; (68): 35-43, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11573346

RESUMEN

Recently, a novel mode of inheritance has been described in the yeast Saccharomyces cerevisiae. The mechanism is based on the prion hypothesis, which posits that self-perpetuating changes in the conformation of single protein, PrP, underlie the severe neurodegeneration associated with the transmissible spongiform enchephalopathies in mammals. In yeast, two prions, [URE3] and [PSI+], have been identified, but these factors confer unique phenotypes rather than disease to the organism. In each case, the prion-associated phenotype has been linked to alternative conformations of the Ure2 and Sup35 proteins. Remarkably, Ure2 and Sup35 proteins existing in the alternative conformations have the unique capacity to transmit this physical state to the newly synthesized protein in vivo. Thus, a mechanism exists to ensure replication of the conformational information that underlies protein-only inheritance. We have characterized the mechanism by which Sup35 conformational information is replicated in vitro. The assembly of amyloid fibres by a region of Sup35 encompassing the N-terminal 254 amino acids faithfully recapitulates the in vivo propagation of [PSI+]. Mutations that alter [PSI+] inheritance in vivo change the kinetics of amyloid assembly in vitro in a complementary fashion, and lysates from [PSI+] cells, but not [psi-] cells, accelerate assembly in vitro. Using this system we propose a mechanism by which the alternative conformation of Sup35 is adopted by an unstructured oilgomeric intermediate at the time of assembly.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Amiloide/química , Modelos Moleculares , Factores de Terminación de Péptidos , Priones/química , Priones/genética , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
3.
Adv Protein Chem ; 57: 335-66, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11447696

RESUMEN

Biochemical characterization of the yeast prions has revealed many similarities with the mammalian amyloidogenic proteins. The ease of generating in vivo mutations in yeast and the developing in vitro models for [PSI+] and [URE3] circumvent many of the difficulties of studying the proteins linked to the mammalian amyloidoses. Future work especially aimed at understanding the molecular role of chaperone proteins in regulating conversion as well as the early steps in de novo formation of the prion state in yeast will likely provide invaluable lessons that may be more broadly applicable to related processes in higher eukaryotes. It is important to remember, however, that there are clear distinctions between disease states associated with amyloidogenesis and the epigenetic modulation of protein function by self-perpetuating conformational conversions. Amyloid formation is detrimental to mammals and is likely selected against, providing a possible explanation for the late onset of these disorders (Lansbury, 1999). In contrast, the known yeast prions are compatible with normal growth and, if beneficial to the organism, may be subject to evolutionary pressures that ultimately maximize transmission. In the prion proteins examined to date, distinct domains are responsible for normal function and for the conformational switches producing a prion conversion of that function. Recent work has demonstrated that the prion domains are both modular and transferable to other proteins on which they can confer a heritable epigenetic alteration of function (Edskes et al., 1999; Li and Lindquist, 2000; Patino et al., 1996; Santoso et al., 2000; Sondheimer and Lindquist, 2000). That is, prion domains need not coevolve with particular functional domains but might be moved from one protein to another during evolution. Such processes may be widely used in biology. Mechanistic studies of [PSI+] and [URE3] replication are sure to lay a foundation of knowledge for understanding a host of nonconventional genetic elements that currently remain elusive.


Asunto(s)
Proteínas Fúngicas/fisiología , Chaperonas Moleculares/fisiología , Priones/fisiología , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Técnicas In Vitro , Datos de Secuencia Molecular , Factores de Terminación de Péptidos , Priones/química
4.
Curr Biol ; 11(5): 366-9, 2001 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-11267875

RESUMEN

The polymerization of many amyloids is a two-stage process initiated by the formation of a seeding nucleus or protofibril. Soluble protein then assembles with these nuclei to form amyloid fibers. Whether fiber growth is bidirectional or unidirectional has been determined for two amyloids. In these cases, bidirectional growth was established by time lapse atomic-force microscopy. Here, we investigated the growth of amyloid fibers formed by NM, the prion-determining region of the yeast protein Sup35p. The conformational changes in NM that lead to amyloid formation in vitro serve as a model for the self-perpetuating conformational changes in Sup35p that allow this protein to serve as an epigenetic element of inheritance in vivo. To assess the directionality of fiber growth, we genetically engineered a mutant of NM so that it contained an accessible cysteine residue that was easily labeled after fiber formation. The mutant protein assembled in vitro with kinetics indistinguishable from those of the wild-type protein and propagated the heritable genetic trait [PSI(+)] with the same fidelity. In reactions nucleated with prelabeled fibers, unlabeled protein assembled at both ends. Thus, NM fiber growth is bidirectional.


Asunto(s)
Proteínas Fúngicas/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Terminación de Péptidos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
5.
Proc Natl Acad Sci U S A ; 98(3): 914-9, 2001 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-11158570

RESUMEN

Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing V(max) with little effect on K(m). In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering V(max) with little effect on K(m). ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Estradiol/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Mutación Puntual , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
7.
Nature ; 407(6803): 477-83, 2000 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11028992

RESUMEN

A major enigma in evolutionary biology is that new forms or functions often require the concerted effects of several independent genetic changes. It is unclear how such changes might accumulate when they are likely to be deleterious individually and be lost by selective pressure. The Saccharomyces cerevisiae prion [PSI+] is an epigenetic modifier of the fidelity of translation termination, but its impact on yeast biology has been unclear. Here we show that [PSI+] provides the means to uncover hidden genetic variation and produce new heritable phenotypes. Moreover, in each of the seven genetic backgrounds tested, the constellation of phenotypes produced was unique. We propose that the epigenetic and metastable nature of [PSI+] inheritance allows yeast cells to exploit pre-existing genetic variation to thrive in fluctuating environments. Further, the capacity of [PSI+] to convert previously neutral genetic variation to a non-neutral state may facilitate the evolution of new traits.


Asunto(s)
Proteínas Fúngicas/genética , Variación Genética , Priones/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Antibacterianos/farmacología , Sitios de Unión , Etanol/farmacología , Proteínas Fúngicas/fisiología , Factores de Terminación de Péptidos , Fenotipo , Priones/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
Science ; 289(5483): 1317-21, 2000 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-10958771

RESUMEN

Prion proteins can serve as genetic elements by adopting distinct physical and functional states that are self-perpetuating and heritable. The critical region of one prion protein, Sup35, is initially unstructured in solution and then forms self-seeded amyloid fibers. We examined in vitro the mechanism by which this state is attained and replicated. Structurally fluid oligomeric complexes appear to be crucial intermediates in de novo amyloid nucleus formation. Rapid assembly ensues when these complexes conformationally convert upon association with nuclei. This model for replicating protein-based genetic information, nucleated conformational conversion, may be applicable to other protein assembly processes.


Asunto(s)
Amiloide/química , Proteínas Fúngicas/química , Priones/química , Proteínas de Saccharomyces cerevisiae , Biopolímeros/química , Centrifugación por Gradiente de Densidad , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Endopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Cinética , Luz , Micelas , Microscopía de Fuerza Atómica , Microscopía Electrónica , Modelos Químicos , Factores de Terminación de Péptidos , Priones/metabolismo , Priones/ultraestructura , Conformación Proteica , Pliegue de Proteína , Dispersión de Radiación , Solubilidad , Sonicación
9.
Trends Cell Biol ; 10(3): 98-105, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10675903

RESUMEN

Recent work suggests that two unrelated phenotypes, [PSI+] and [URE3], in the yeast Saccharomyces cerevisiae are transmitted by non-covalent changes in the physical states of their protein determinants, Sup35p and Ure2p, rather than by changes in the genes that encode these proteins. The mechanism by which alternative protein states are self-propagating is the key to understanding how proteins function as elements of epigenetic inheritance. Here, we focus on recent molecular-genetic analysis of the inheritance of the [PSI+] factor of S. cerevisiae. Insights into this process might be extendable to a group of mammalian diseases (the amyloidoses), which are also believed to be a manifestation of self-perpetuating changes in protein conformation.


Asunto(s)
Herencia Extracromosómica/genética , Proteínas Fúngicas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Glutatión Peroxidasa , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Factores de Terminación de Péptidos , Fenotipo , Priones/genética , Priones/metabolismo , Unión Proteica/genética , Biosíntesis de Proteínas
10.
Annu Rev Cell Dev Biol ; 15: 661-703, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10611975

RESUMEN

The [PSI+] factor of the yeast Saccharomyces cerevisiae is an epigenetic regulator of translation termination. More than three decades ago, genetic analysis of the transmission of [PSI+] revealed a complex and often contradictory series of observations. However, many of these discrepancies may now be reconciled by a revolutionary hypothesis: protein conformation-based inheritance (the prion hypothesis). This model predicts that a single protein can stably exist in at least two distinct physical states, each associated with a different phenotype. Propagation of one of these traits is achieved by a self-perpetuating change in the protein from one form to the other. Mounting genetic and biochemical evidence suggests that the determinant of [PSI+] is the nuclear encoded Sup35p, a component of the translation termination complex. Here we review the series of experiments supporting the yeast prion hypothesis and provide another look at the 30 years of work preceding this theory in light of our current state of knowledge.


Asunto(s)
Proteínas Fúngicas/metabolismo , Factores de Terminación de Péptidos , Priones/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Codón sin Sentido , Humanos , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular
12.
Mol Cell Biol ; 19(2): 1325-33, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9891066

RESUMEN

The maintenance of [PSI], a prion-like form of the yeast release factor Sup35, requires a specific concentration of the chaperone protein Hsp104: either deletion or overexpression of Hsp104 will cure cells of [PSI]. A major puzzle of these studies was that overexpression of Hsp104 alone, from a heterologous promoter, cures cells of [PSI] very efficiently, yet the natural induction of Hsp104 with heat shock, stationary-phase growth, or sporulation does not. These observations pointed to a mechanism for protecting the genetic information carried by the [PSI] element from vicissitudes of the environment. Here, we show that simultaneous overexpression of Ssa1, a protein of the Hsp70 family, protects [PSI] from curing by overexpression of Hsp104. Ssa1 protein belongs to the Ssa subfamily, members of which are normally induced with Hsp104 during heat shock, stationary-phase growth, and sporulation. At the molecular level, excess Ssa1 prevents a shift of Sup35 protein from the insoluble (prion) to the soluble (cellular) state in the presence of excess Hsp104. Overexpression of Ssa1 also increases nonsense suppression by [PSI] when Hsp104 is expressed at its normal level. In contrast, hsp104 deletion strains lose [PSI] even in the presence of overproduced Ssa1. Overproduction of the unrelated chaperone protein Hsp82 (Hsp90) neither cured [PSI] nor antagonized the [PSI]-curing effect of overproduced Hsp104. Our results suggest it is the interplay between Hsp104 and Hsp70 that allows the maintenance of [PSI] under natural growth conditions.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas , Proteínas Fúngicas/genética , Expresión Génica , Genes Fúngicos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico , Proteínas de Choque Térmico/genética , Priones/química , Priones/genética , Conformación Proteica , Saccharomyces cerevisiae/genética , Solubilidad , Supresión Genética , Temperatura
13.
Nucleic Acids Res ; 25(18): 3665-71, 1997 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-9278488

RESUMEN

The ability to place a series of gene constructs at a specific site in the genome opens new possibilities for the experimental examination of gene expression and chromosomal position effects. We report that the FLP- FRT site-specific recombination system of the yeast 2mu plasmid can be used to integrate DNA at a chromosomal FRT target site in Drosophila. The technique we used was to first integrate an FRT- flanked gene by standard P element-mediated transformation. FLP was then used to excise the FRT- flanked donor DNA and screen for FLP-mediated re-integration at an FRT target at a different chromosome location. Such events were recovered from up to 5% of the crosses used to screen for mobilization and are easily detectable by altered linkage of a white reporter gene or by the generation of a white + gene upon integration.


Asunto(s)
ADN Nucleotidiltransferasas/genética , ADN/genética , Drosophila/genética , Genes de Insecto , Recombinación Genética , Animales , Regulación de la Expresión Génica , Marcación de Gen
14.
Trends Genet ; 12(11): 467-71, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8973157

RESUMEN

The unusual genetic behaviour of two yeast extrachromosomal elements [PSI] and [URE3] is entirely consistent with a prion-like mechanism of inheritance involving an autocatalytic alteration in the conformation of a normal cellular protein. In the case of both yeast determinants the identity of the underlying cellular prion protein is known. The discovery that the molecular chaperone Hsp104 is essential for the establishment and maintenance of the [PSI] determinant provides an explanation for several aspects of the puzzling genetic behaviour of these determinants. What remains to be explained is whether these determinants represent 'disease states' of yeast or represent the first examples of a unique mechanism for producing a heritable change in phenotype without an underlying change in genotype.


Asunto(s)
Proteínas Fúngicas/genética , Priones/genética , Proteínas de Saccharomyces cerevisiae , Levaduras/genética , Regulación Fúngica de la Expresión Génica , Glutatión Peroxidasa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Factores de Terminación de Péptidos , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Priones/metabolismo , Conformación Proteica
15.
J Exp Biol ; 199(Pt 8): 1837-44, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8708583

RESUMEN

To determine how the accumulation of the major Drosophila melanogaster heat-shock protein, Hsp70, affects inducible thermotolerance in larvae and pupae, we have compared two sister strains generated by site-specific homologus recombination. One strain carried 12 extra copies of the Hsp70 gene at a single insertion site (extra-copy strain) and the other carried remnants of the transgene construct but lacked the extra copies of Hsp70 (excision strain). Hsp70 levels in whole-body lysates of larvae and pupae were measured by ELISA with an Hsp70-specific antibody. In both extra-copy and excision strains, Hsp70 was undetectable prior to heat shock. Hsp70 concentrations were higher in the extra-copy strain than in the excision strain at most time points during and after heat shock. Pretreatment (i.e. exposure to 36 degrees C before heat shock) significantly improved thermotolerance, and this improvement was greater and more rapid in larvae and pupae of the extra-copy strain than in those of the excision strain. The experimental conditions resemble thermal regimes actually experienced by Drosophila in the field. Thus, these findings represent the best evidence to date that the amount of a heat-shock protein affects the fitness of a complex animal in the wild.


Asunto(s)
Drosophila melanogaster/fisiología , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/fisiología , Calor , Ingeniería de Proteínas , Animales , Drosophila melanogaster/genética , Cinética , Larva/fisiología , Pupa/fisiología , Recombinación Genética
16.
Science ; 268(5212): 880-4, 1995 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-7754373

RESUMEN

The yeast non-Mendelian factor [psi+] has been suggested to be a self-modified protein analogous to mammalian prions. Here it is reported that an intermediate amount of the chaperone protein Hsp104 was required for the propagation of the [psi+] factor. Over-production or inactivation of Hsp104 caused the loss of [psi+]. These results suggest that chaperone proteins play a role in prion-like phenomena, and that a certain level of chaperone expression can cure cells of prions without affecting viability. This may lead to antiprion treatments that involve the alteration of chaperone amounts or activity.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Proteínas de Choque Térmico/fisiología , Priones/biosíntesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Expresión Génica , Proteínas de Choque Térmico/genética , Mutación , Saccharomyces cerevisiae/genética , Supresión Genética
17.
Curr Biol ; 3(12): 842-53, 1993 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15335817

RESUMEN

BACKGROUND: Heat-shock proteins (hsps) are thought to protect cells against stresses, especially due to elevated temperatures. But while genetic manipulation of hsp gene expression can protect microorganisms and cultured metazoan cells against lethal stress, this has so far not been demonstrated in multicellular organisms. Testing whether expression of an hsp transgene contributes to increased stress tolerance is complicated by a general problem of transgene analysis: if the transgene cannot be targeted to a precise site in the genome, newly observed phenotypes may be due to either the action of the transgene or mutations caused by the transgene insertion. RESULTS: To study the relationship between heat tolerance and hsp expression in Drosophila melanogaster, we have developed a novel method for transgene analysis, based upon the site-specific FLP recombinase. The method employs site-specific sister chromatid exchange to create an allelic series of transgene insertions that share the same integration site, but differ in transgene copy number. Phenotypic differences between members of this series can be confidently attributed to the transgenes. Using such an allelic series and a novel thermotolerance assay for Drosophila embryos, we investigated the role of the 70 kD heat-shock protein, Hsp 70, in thermotolerance. At early embryonic stages, Hsp70 accumulation was rate-limiting for thermotolerance, and elevated Hsp70 expression increased survival at extreme temperatures. CONCLUSION: Our results provide an improved method for analyzing transgenes and demonstrate that, in Drosophila, Hsp70 is a critical thermotolerance factor. They show, moreover, that manipulating the expression of a single hsp can be sufficient to improve the stress tolerance of a complex multicellular organism.

18.
Science ; 248(4959): 1112-5, 1990 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-2188365

RESUMEN

A heat shock protein gene, HSP104, was isolated from Saccharomyces cerevisiae and a deletion mutation was introduced into yeast cells. Mutant cells grew at the same rate as wild-type cells and died at the same rate when exposed directly to high temperatures. However, when given a mild pre-heat treatment, the mutant cells did not acquire tolerance to heat, as did wild-type cells. Transformation with the wild-type gene rescued the defect of mutant cells. The results demonstrate that a particular heat shock protein plays a critical role in cell survival at extreme temperatures.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas de Choque Térmico/fisiología , Calor , Saccharomyces cerevisiae/fisiología , Clonación Molecular , Proteínas Fúngicas/biosíntesis , Genes Fúngicos , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Mutación , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
19.
Mol Cell Biol ; 9(11): 5265-71, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2689876

RESUMEN

Analysis of the cloned gene confirms that hsp26 of Saccharomyces cerevisiae is a member of the small heat shock protein superfamily. Previous mutational analysis failed to demonstrate any function for the protein. Further experiments presented here demonstrate that hsp26 has no obvious regulatory role and no major effect on thermotolerance. It is possible that the small heat shock protein genes originated as primitive viral or selfish DNA elements.


Asunto(s)
Proteínas de Choque Térmico/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Análisis Mutacional de ADN , ADN de Hongos/genética , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Temperatura , Factores de Tiempo
20.
Genetics ; 122(2): s1-s48, 1989 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17246502
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA