Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell Biol ; 20(4): 1254-62, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10648611

RESUMEN

Hus1 is one of six checkpoint Rad proteins required for all Schizosaccharomyces pombe DNA integrity checkpoints. MYC-tagged Hus1 reveals four discrete forms. The main form, Hus1-B, participates in a protein complex with Rad9 and Rad1, consistent with reports that Rad1-Hus1 immunoprecipitation is dependent on the rad9(+) locus. A small proportion of Hus1-B is intrinsically phosphorylated in undamaged cells and more becomes phosphorylated after irradiation. Hus1-B phosphorylation is not increased in cells blocked in early S phase with hydroxyurea unless exposure is prolonged. The Rad1-Rad9-Hus1-B complex is readily detectable, but upon cofractionation of soluble extracts, the majority of each protein is not present in this complex. Indirect immunofluorescence demonstrates that Hus1 is nuclear and that this localization depends on Rad17. We show that Rad17 defines a distinct protein complex in soluble extracts that is separate from Rad1, Rad9, and Hus1. However, two-hybrid interaction, in vitro association and in vivo overexpression experiments suggest a transient interaction between Rad1 and Rad17.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN , Endonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Endonucleasas/química , Endonucleasas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Sustancias Macromoleculares , Datos de Secuencia Molecular , Fosforilación , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
2.
Mol Biol Cell ; 10(9): 2905-18, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10473635

RESUMEN

To survive damage to the genome, cells must respond by activating both DNA repair and checkpoint responses. Using genetic screens in the fission yeast Schizosaccharomyces pombe, we recently isolated new genes required for DNA damage checkpoint control. We show here that one of these strains defines a new allele of the previously described rad18 gene, rad18-74. rad18 is an essential gene, even in the absence of extrinsic DNA damage. It encodes a conserved protein related to the structural maintenance of chromosomes proteins. Point mutations in rad18 lead to defective DNA repair pathways responding to both UV-induced lesions and, as we show here, double-stranded breaks. Furthermore, rad18p is required to maintain cell cycle arrest in the presence of DNA damage, and failure of this leads to highly aberrant mitoses. A gene encoding a BRCT-containing protein, brc1, was isolated as an allele-specific high-copy suppressor of rad18-74. brc1 is required for mitotic fidelity and for cellular viability in strains with rad18 mutations but is not essential for DNA damage responses. Mutations in rad18 and brc1 are synthetically lethal with a topoisomerase II mutant (top2-191), indicating that these proteins play a role in chromatin organization. These studies show a role for chromatin organization in the maintenance or activation of responses to DNA damage.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Adenosina Trifosfato/metabolismo , Alelos , Sitios de Unión , Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase G2 , Dosificación de Gen , Genes Fúngicos , Mitosis , Mutación/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Supresión Genética
3.
EMBO J ; 17(24): 7239-49, 1998 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-9857181

RESUMEN

UNLABELLED: Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. KEYWORDS: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Interfase/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Daño del ADN , ADN Helicasas/genética , Replicación del ADN , Fase G2/fisiología , Dosificación de Gen , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Tolerancia a Radiación , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Selección Genética , Supresión Genética , Rayos Ultravioleta
4.
Genes Dev ; 12(3): 382-95, 1998 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9450932

RESUMEN

Checkpoints that respond to DNA structure changes were originally defined by the inability of yeast mutants to prevent mitosis following DNA damage or S-phase arrest. Genetic analysis has subsequently identified subpathways of the DNA structure checkpoints, including the reversible arrest of DNA synthesis. Here, we show that the Cds1 kinase is required to slow S phase in the presence of DNA-damaging agents. Cds1 is phosphorylated and activated by S-phase arrest and activated by DNA damage during S phase, but not during G1 or G2. Activation of Cds1 during S phase is dependent on all six checkpoint Rad proteins, and Cds1 interacts both genetically and physically with Rad26. Unlike its Saccharomyces cerevisiae counterpart Rad53, Cds1 is not required for the mitotic arrest checkpoints and, thus, defines an S-phase specific subpathway of the checkpoint response. We propose a model for the DNA structure checkpoints that offers a new perspective on the function of the DNA structure checkpoint proteins. This model suggests that an intrinsic mechanism linking S phase and mitosis may function independently of the known checkpoint proteins.


Asunto(s)
Replicación del ADN/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Fase S/fisiología , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/enzimología , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Daño del ADN/fisiología , Activación Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Genes Supresores/genética , Genes Supresores/fisiología , Hidroxiurea/farmacología , Mitosis/fisiología , Datos de Secuencia Molecular , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Mutación/genética , Mutación/fisiología , Fosfoproteínas/fisiología , Fosforilación , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/fisiología , Temperatura
5.
Mol Cell Biol ; 17(12): 6868-75, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9372918

RESUMEN

The cellular responses to DNA damage are complex and include direct DNA repair pathways that remove the damage and indirect damage responses which allow cells to survive DNA damage that has not been, or cannot be, removed. We have identified the gene mutated in the rad12.502 strain as a Schizosaccharomyces pombe recQ homolog. The same gene (designated rqh1) is also mutated in the hus2.22 mutant. We show that Rqhl is involved in a DNA damage survival mechanism which prevents cell death when UV-induced DNA damage cannot be removed. This pathway also requires the correct functioning of the recombination machinery and the six checkpoint rad gene products plus the Cdsl kinase. Our data suggest that Rqh1 operates during S phase as part of a mechanism which prevents DNA damage causing cell lethality. This process may involve the bypass of DNA damage sites by the replication fork. Finally, in contrast with the reported literature, we do not find that rqh1 (rad12) mutant cells are defective in UV dimer endonuclease activity.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , Genes Fúngicos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Hongos/efectos de la radiación , Células Eucariotas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Modelos Biológicos , Mutación , Sistemas de Lectura Abierta , RecQ Helicasas , Recombinación Genética , Schizosaccharomyces/metabolismo , Rayos Ultravioleta
6.
Eur J Biochem ; 247(2): 518-25, 1997 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9266693

RESUMEN

We have analysed the recircularisation of plasmid DNA, cut with two different endonucleases to generate non-homologous DNA ends, in extracts of unfertilised eggs and oocytes of Xenopus. We found that the capacity to join non-homologous DNA ends, generating diagnostic covalently closed monomer circles, appeared during oocyte maturation at the time of germinal vesicle breakdown. This enzyme function was post-translationally activated in oocyte extracts incubated with unfertilised egg extract containing active cdc2/cyclin B, or by incubation with purified cdc2/cyclin B. Dephosphorylation of egg proteins by alkaline phosphatase inhibited the ability to join non-homologous DNA ends. We show that most linear non-homologous DNA ends repaired to form closed-circular supercoiled monomers, are joined without loss of nucleotides. Following partial purification, the activity was inhibited by inhibitors of poly(ADP-Rib) polymerase, an enzyme that is inactive in oocytes, but phosphorylated and activated during maturation. Competitive inhibition of poly(ADP-Rib) polymerase by > 50 microM 3-aminobenzamide prevented the joining of both matched and non-homologous DNA ends. We conclude that post-translational phosphorylation provides one route by which end-joining of non-homologous DNA can be regulated.


Asunto(s)
ADN Ligasas/metabolismo , Oocitos/fisiología , Plásmidos/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Secuencia de Bases , Benzamidas/farmacología , Proteína Quinasa CDC2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , ADN Ligasa (ATP) , Embrión no Mamífero/metabolismo , Femenino , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Óvulo/fisiología , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Moldes Genéticos , Extractos de Tejidos/metabolismo , Xenopus laevis
7.
J Cell Sci ; 108 ( Pt 11): 3557-68, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8586667

RESUMEN

Activation of p34cdc2 kinase is essential for entry into mitosis while subsequent deactivation and cyclin degradation are associated with exit. In Xenopus embryos, both of these phases are regulated by post-translation modifications and occur spontaneously on incubation of extracts prepared late in the first cell cycle. Even though high levels of calcium buffer were initially used to prepare these extracts, we found that free calcium levels in them remained in the observed physiological range (200-500 nM). Further addition of calcium buffers only slightly reduced free calcium levels, but inhibited histone H1 (cdc2A) kinase deactivation and cyclin degradation. Higher buffer concentrations slowed the kinase activation phase. Reducing the free buffer concentration by premixing with calcium reversed the effects of the buffer, indicating that the inhibitory effects arose from the calcium-chelating properties of the buffer rather than non-specific side effects. Furthermore, additions of calcium buffer at the end of the H1 kinase activation phase did not prevent deactivation. From these results, and the order of effectiveness of different calcium buffers in disrupting the H1 kinase cycle, we suggest that local transient increases in free calcium influence the rate of cdc2 kinase activation and are required to initiate the pathway leading to cyclin degradation and kinase inactivation in mitotic cell cycles.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Calcio/fisiología , Ciclinas/metabolismo , Óvulo/enzimología , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/farmacología , Extractos Celulares/fisiología , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Interfase/fisiología , Factor Promotor de Maduración/metabolismo , Mitosis/fisiología , Óvulo/citología , Péptidos/farmacología , Fosforilación , Profase/fisiología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA