Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 285: 117080, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39332203

RESUMEN

OBJECTIVE: Epidemiologic investigations have examined the correlation between air pollution and neurologic disorders and neuroanatomic structures. Increasing evidence underscores the profound influence of the gut microbiota on brain health. However, the existing evidence is equivocal, and a causal link remains uncertain. This study aimed: to determine if there is a causal connection between four key air pollutants, and 42 neurologic diseases, and 1325 distinct brain structures; and to explore the potential role of the gut microbiota in mediating these associations. METHODS: Univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) models were deployed to estimate the causal impact of air pollutants (including particulate matter [PM] with aerodynamic diameters <2.5 µm [PM2.5], and <10 µm [PM10]; PM2.5 absorbance; and nitrogen oxides [NOx]) on brain health through various Mendelian randomization methodologies. Lastly, the mediating role of the gut microbiome in the connections between the identified pollutants and neurologic diseases and brain structures was systematically examined. RESULTS: The potential causal associations of PM2.5, PM2.5 absorbance, PM10, and exposure to NOx, with the risks of intracerebral hemorrhage, hippocampal perivascular spaces, large artery strokes, generalized epilepsy with tonic-clonic seizures, Alzheimer's disease, multiple sclerosis, anorexia nervosa, post-traumatic stress disorder (PTSD), and 420 brain structures, were investigated by UVMR analysis. Following adjustment for air pollutants by MVMR analysis, the genetic correlations between PM10 exposure and PTSD and multiple sclerosis remained significant and robust. Importantly, we observed that phylum Lentisphaerae may mediate the association between PM10 and multiple sclerosis. Additionally, PM2.5 absorbance with a greater risk of reduced thickness in the left anterior transverse temporal gyrus of Heschl and a decreased area in the right sulcus intermedius primus of Jensen, mediated by genus Senegalimassilia and genus Lachnospiraceae UCG010, respectively. Finally, we provided evidence that Clostridium innocuum and genus Ruminococcus2 may partly mediate the causal effect of NOx on altered thickness in the left transverse temporal cortex and area in the right sulcus intermedius primus of Jensen, respectively. CONCLUSION: This study established a genetic connection between air pollution and brain health, implicating the gut microbiota as a potential mediator in the relationship between air pollution, neurologic disorders, and altered brain structures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Encéfalo , Microbioma Gastrointestinal , Análisis de la Aleatorización Mendeliana , Material Particulado , Microbioma Gastrointestinal/efectos de los fármacos , Contaminación del Aire/efectos adversos , Humanos , Encéfalo/efectos de los fármacos , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Enfermedades del Sistema Nervioso/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos
2.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824202

RESUMEN

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Procesamiento Postranscripcional del ARN , Clasificación del Tumor , Mitocondrias/genética , Mitocondrias/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Multiómica
3.
J Cancer Res Clin Oncol ; 150(2): 105, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411731

RESUMEN

The tripartite motif-containing (TRIM) protein family has steadily become a hotspot in tumor-related research. As a member of the E3 ubiquitin ligase family, TRIM is working on many crucial biological processes, including the regulation of tumor cell proliferation, metastasis, apoptosis, and autophagy. Among the diverse TRIM superfamily members, TRIM3 operates via different mechanisms in various types of tumors. This review primarily focuses on the current state of research regarding the antitumor mechanisms of TRIM3 in different cancers. A more in-depth study of TRIM3 may provide new directions for future antitumor treatments. Our review focuses on TRIM3 proteins and cancer. We searched for relevant articles on the mechanisms by which TRIM3 affects tumorigenesis and development from 1997 to 2023 and summarized the latest progress and future directions. Triad-containing motif protein 3 (TRIM3) is an important protein, which plays a key role in the process of tumorigenesis and development. The comprehensive exploration of TRIM3 is anticipated to pave the way for future advancements in antitumor therapy, which is expected to be a new hallmark for cancer detection and a novel target for drug action. TRIM3 is poised to become a significant milestone in cancer detection and a promising focal point for drug intervention. Recent years have witnessed notable progress in research aimed at unraveling the antitumor mechanism of TRIM3, with far-reaching implications for practical tumor diagnosis, treatment protocols, efficacy evaluation, economics, and pharmaceutical utilization.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Humanos , Apoptosis , Autofagia , Proliferación Celular , Proteínas de Motivos Tripartitos , Proteínas Portadoras
4.
Front Oncol ; 13: 1249448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781198

RESUMEN

Gliomas are the leading cause in more than 50% of malignant brain tumor cases. Prognoses, recurrences, and mortality are usually poor for gliomas that have malignant features. In gliomas, there are four grades, with grade IV gliomas known as glioblastomas (GBM). Currently, the primary methods employed for glioma treatment include surgical removal, followed by chemotherapy after the operation, and targeted therapy. However, the outcomes of these treatments are unsatisfactory. Gliomas have a high number of tumor-associated macrophages (TAM), which consist of brain microglia and macrophages, making them the predominant cell group in the tumor microenvironment (TME). The glioma cohort was analyzed using single-cell RNA sequencing to quantify the genes related to TAMs in this study. Furthermore, the ssGSEA analysis was utilized to assess the TAM-associated score in the glioma group. In the glioma cohort, we have successfully developed a prognostic model consisting of 12 genes, which is derived from the TAM-associated genes. The glioma cohort demonstrated the predictive significance of the TAM-based risk model through survival analysis and time-dependent ROC curve. Furthermore, the correlation analysis revealed the significance of the TAM-based risk model in the application of immunotherapy for individuals diagnosed with GBM. Ultimately, the additional examination unveiled the prognostic significance of PTX3 in the glioma group, establishing it as the utmost valuable prognostic indicator in patients with GBM. The PCR assay revealed the PTX3 is significantly up-regulated in GBM cohort. Additionally, the assessment of cell growth further confirms the involvement of PTX3 in the GBM group. The analysis of cell proliferation showed that the increased expression of PTX3 enhanced the ability of glioma cells to proliferate. The prognosis of glioblastomas and glioma is influenced by the proliferation of tumor-associated macrophages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA