Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1534(1): 69-93, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532631

RESUMEN

The Hadley circulation (HC) is a global-scale atmospheric feature with air descending in the subtropics and ascending in the tropics, which plays a fundamental role in Earth's climate because it transports energy polewards and moisture equatorwards. Theoretically, as a consequence of anthropogenic climate change, the HC is expected to expand polewards, while indications on the HC strength are equivocal, as weakening and strengthening are expected in response to different mechanisms. In fact, there is a general agreement among reanalyses and climate simulations that the HC has significantly widened in the last four decades and it will continue widening in the future, but there is no consensus on past and future changes of the HC strength. Substantial uncertainties are produced by the effects of natural variability, structural deficiencies in climate models and reanalyses, and the influence of other forcing factors, such as anthropogenic aerosols, black carbon, and stratospheric and tropospheric ozone. The global HC can be decomposed into three regional HCs, associated with ascending motion above Equatorial Africa, the Maritime Continent, and Equatorial America, which have evolved differently during the last decades. Climate projections suggest a generalized expansion in the Southern Hemisphere, but a complex regional expansion/contraction pattern in the Northern Hemisphere.


Asunto(s)
Ozono , Humanos , Ozono/química , Cambio Climático , Modelos Climáticos
2.
EuroMediterr J Environ Integr ; : 1-14, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37361134

RESUMEN

Maritime transport is a vital sector for global trade and the world economy. Particularly for islands, there is also an important social dimension of this sector, since island communities strongly rely on it for a connection with the mainland and the transportation of goods and passengers. Furthermore, islands are exceptionally vulnerable to climate change, as the rising sea level and extreme events are expected to induce severe impacts. Such hazards are anticipated to also affect the operations of the maritime transport sector by affecting either the port infrastructure or ships en route. The present study is an effort to better comprehend and assess the future risk of maritime transport disruption in six European islands and archipelagos, and it aims at supporting regional to local policy and decision-making. We employ state-of-the-art regional climate datasets and the widely used impact chain approach to identify the different components that might drive such risks. Larger islands (e.g., Corsica, Cyprus and Crete) are found to be more resilient to the impacts of climate change on maritime operations. Our findings also highlight the importance of adopting a low-emission pathway, since this will keep the risk of maritime transport disruption similar to present levels or even slightly decreased for some islands because of an enhanced adaptation capacity and advantageous demographic changes. Supplementary Information: The online version contains supplementary material available at 10.1007/s41207-023-00370-6.

3.
Sci Rep ; 12(1): 10365, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725762

RESUMEN

Fire activity has significantly changed in Europe over the last decades (1980-2020s), with the emergence of summers attaining unprecedented fire prone weather conditions. Here we report a significant shift in the non-stationary relationship linking fire weather conditions and fire intensity measured in terms of CO2 emissions released during biomass burning across a latitudinal gradient of European IPCC regions. The reported trends indicate that global warming is possibly inducing an incipient change on regional fire dynamics towards increased fire impacts in Europe, suggesting that emerging risks posed by exceptional fire-weather danger conditions may progressively exceed current wildfire suppression capabilities in the next decades and impact forest carbon sinks.


Asunto(s)
Incendios , Incendios Forestales , Dióxido de Carbono , Calentamiento Global , Tiempo (Meteorología)
4.
Sci Rep ; 12(1): 5754, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388066

RESUMEN

Full comprehension of the dynamics of hazardous sea levels is indispensable for assessing and managing coastal flood risk, especially under a changing climate. The 12 November 2019 devastating flood in the historical city of Venice (Italy) stimulated new investigations of the coastal flooding problem from different perspectives and timescales. Here Venice is used as a paradigm for coastal flood risk, due to the complexity of its flood dynamics facing those of many other locations worldwide. Spectral decomposition was applied to the long-term 1872-2019 sea-level time series in order to investigate the relative importance of different drivers of coastal flooding and their temporal changes. Moreover, a multivariate analysis via copulas provided statistical models indispensable for correctly understanding and reproducing the interactions between the variables at play. While storm surges are the main drivers of the most extreme events, tides and long-term forcings associated with planetary atmospheric waves and seasonal to inter-annual oscillations are predominant in determining recurrent nuisance flooding. The non-stationary analysis revealed a positive trend in the intensity of the non-tidal contribution to extreme sea levels in the last three decades, which, along with relative sea-level rise, contributed to an increase in the frequency of floods in Venice.


Asunto(s)
Inundaciones , Elevación del Nivel del Mar , Ciudades , Clima , Cambio Climático
5.
Sci Data ; 5: 180139, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015808

RESUMEN

The dataset consists of 39 years of directional wave time series recorded since 1979 at the CNR-ISMAR "Acqua Alta" oceanographic research tower, located in the Northern Adriatic Sea. The extent of the time series allows us to describe the wave climate in the North Adriatic region and to identify trends and links with large scale climate patterns obtained from a single and permanent observational source. The northern part of the Adriatic Sea is characterized by two main wind and correspondingly wave regimes, strongly forced by the regional orography. The high sensitivity of this particular area to even small variations of large scale meteorological patterns allows to explore possible links of the local wave, hence wind, activity with large-scale north hemisphere circulation or weather regimes. Different wave gauges have been used since the start of the measurements, progressively upgraded and repositioned during maintenance operations. The recorded wave data have been thoroughly verified and corrected where necessary.

6.
Sci Data ; 5: 180044, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29583140

RESUMEN

We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications.

7.
PLoS One ; 9(12): e115655, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25535973

RESUMEN

Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945-2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas.


Asunto(s)
Ecosistema , Calentamiento Global , Invertebrados/crecimiento & desarrollo , Animales , Geografía , Islas , Mar Mediterráneo , Estaciones del Año , Análisis de Supervivencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA