Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Yeast ; 41(7): 423-436, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850080

RESUMEN

Meiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore-autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning-based image recognition and classification pipeline for high-throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild-type and selected gene knock-out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning-based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.


Asunto(s)
Intercambio Genético , Aprendizaje Profundo , Meiosis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/clasificación , Meiosis/genética , Segregación Cromosómica , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Biochemistry ; 63(11): 1423-1433, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38743592

RESUMEN

PGM1-linked congenital disorder of glycosylation (PGM1-CDG) is an autosomal recessive disease characterized by several phenotypes, some of which are life-threatening. Research focusing on the disease-related variants of the α-D-phosphoglucomutase 1 (PGM1) protein has shown that several are insoluble in vitro and expressed at low levels in patient fibroblasts. Due to these observations, we hypothesized that some disease-linked PGM1 protein variants are structurally destabilized and subject to protein quality control (PQC) and rapid intracellular degradation. Employing yeast-based assays, we show that a disease-associated human variant, PGM1 L516P, is insoluble, inactive, and highly susceptible to ubiquitylation and rapid degradation by the proteasome. In addition, we show that PGM1 L516P forms aggregates in S. cerevisiae and that both the aggregation pattern and the abundance of PGM1 L516P are chaperone-dependent. Finally, using computational methods, we perform saturation mutagenesis to assess the impact of all possible single residue substitutions in the PGM1 protein. These analyses identify numerous missense variants with predicted detrimental effects on protein function and stability. We suggest that many disease-linked PGM1 variants are subject to PQC-linked degradation and that our in silico site-saturated data set may assist in the mechanistic interpretation of PGM1 variants.


Asunto(s)
Fosfoglucomutasa , Saccharomyces cerevisiae , Humanos , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/genética , Fosfoglucomutasa/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteolisis , Mutación Missense , Ubiquitinación , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Estabilidad Proteica , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética
3.
Blood Cancer J ; 14(1): 16, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253636

RESUMEN

Plk1-interacting checkpoint helicase (PICH) is a DNA translocase involved in resolving ultrafine anaphase DNA bridges and, therefore, is important to safeguard chromosome segregation and stability. PICH is overexpressed in various human cancers, particularly in lymphomas such as Burkitt lymphoma, which is caused by MYC translocations. To investigate the relevance of PICH in cancer development and progression, we have combined novel PICH-deficient mouse models with the Eµ-Myc transgenic mouse model, which recapitulates B-cell lymphoma development. We have observed that PICH deficiency delays the onset of MYC-induced lymphomas in Pich heterozygous females. Moreover, using a Pich conditional knockout mouse model, we have found that Pich deletion in adult mice improves the survival of Eµ-Myc transgenic mice. Notably, we show that Pich deletion in healthy adult mice is well tolerated, supporting PICH as a suitable target for anticancer therapies. Finally, we have corroborated these findings in two human Burkitt lymphoma cell lines and we have found that the death of cancer cells was accompanied by chromosomal instability. Based on these findings, we propose PICH as a potential therapeutic target for Burkitt lymphoma and for other cancers where PICH is overexpressed.


Asunto(s)
Linfoma de Burkitt , Adulto , Femenino , Animales , Humanos , Ratones , Linfoma de Burkitt/genética , Línea Celular , Inestabilidad Cromosómica , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , ADN
4.
Sci Data ; 10(1): 832, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007506

RESUMEN

Mahogany species (family Meliaceae) are highly valued for their aesthetic and durable wood. Despite their economic and ecological importance, genomic resources for mahogany species are limited, hindering genetic improvement and conservation efforts. Here we perform chromosome-scale genome assemblies of two commercially important mahogany species: Swietenia macrophylla and Khaya senegalensis. By combining 10X sequencing and Hi-C data, we assemble high-quality genomes of 274.49 Mb (S. macrophylla) and 406.50 Mb (K. senegalensis), with scaffold N50 lengths of 8.51 Mb and 7.85 Mb, respectively. A total of 99.38% and 98.05% of the assembled sequences are anchored to 28 pseudo-chromosomes in S. macrophylla and K. senegalensis, respectively. We predict 34,129 and 31,908 protein-coding genes in S. macrophylla and K. senegalensis, respectively, of which 97.44% and 98.49% are functionally annotated. The chromosome-scale genome assemblies of these mahogany species could serve as a vital genetic resource, especially in understanding the properties of non-model woody plants. These high-quality genomes could support the development of molecular markers for breeding programs, conservation efforts, and the sustainable management of these valuable forest resources.


Asunto(s)
Genoma de Planta , Meliaceae , Cromosomas , Meliaceae/genética
5.
NAR Cancer ; 5(4): zcad052, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37829116

RESUMEN

CIP2A is an inhibitor of the tumour suppressor protein phosphatase 2A. Recently, CIP2A was identified as a synthetic lethal interactor of BRCA1 and BRCA2 and a driver of basal-like breast cancers. In addition, a joint role of TopBP1 (topoisomerase IIß-binding protein 1) and CIP2A for maintaining genome integrity during mitosis was discovered. TopBP1 has multiple functions as it is a scaffold for proteins involved in DNA replication, transcriptional regulation, cell cycle regulation and DNA repair. Here, we briefly review details of the CIP2A-TopBP1 interaction, its role in maintaining genome integrity, its involvement in cancer and its potential as a therapeutic target.

6.
Sci Data ; 10(1): 512, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537171

RESUMEN

Wood is the most important natural and endlessly renewable source of energy. Despite the ecological and economic importance of wood, many aspects of its formation have not yet been investigated. We performed chromosome-scale genome assemblies of three timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis) which exhibit different wood properties such as wood density, hardness, growth rate, and fiber cell wall thickness. The combination of 10X, stLFR, Hi-Fi sequencing and HiC data led us to assemble high-quality genomes evident by scaffold N50 length of 55.97 Mb (O. pyramidale), 22.37 Mb (M. ferrea) and 14.55 Mb (T. grandis) with >97% BUSCO completeness of the assemblies. A total of 35774, 24027, and 44813 protein-coding genes were identified in M. ferrea, T. grandis and O. pyramidale, respectively. The data generated in this study is anticipated to serve as a valuable genetic resource and will promote comparative genomic analyses, and it is of practical importance in gaining a further understanding of the wood properties in non-model woody species.


Asunto(s)
Bombacaceae , Genoma de Planta , Bombacaceae/genética , Cromosomas , Árboles/genética , Madera/genética
7.
Nucleic Acids Res ; 51(17): e91, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37572348

RESUMEN

Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we describe CRI-SPA, a method allowing the transfer of chromosomal genetic features from a CRI-SPA Donor strain to arrayed strains in large libraries of Saccharomyces cerevisiae. CRI-SPA is based on mating, CRISPR-Cas9-induced gene conversion, and Selective Ploidy Ablation. CRI-SPA can be massively parallelized with automation and can be executed within a week. We demonstrate the power of CRI-SPA by transferring four genes that enable betaxanthin production into each strain of the yeast knockout collection (≈4800 strains). Using this setup, we show that CRI-SPA is highly efficient and reproducible, and even allows marker-free transfer of genetic features. Moreover, we validate a set of CRI-SPA hits by showing that their phenotypes correlate strongly with the phenotypes of the corresponding mutant strains recreated by reverse genetic engineering. Hence, our results provide a genome-wide overview of the genetic requirements for betaxanthin production. We envision that the simplicity, speed, and reliability offered by CRI-SPA will make it a versatile tool to forward systems-level understanding of biological processes.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Betaxantinas , Edición Génica/métodos , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
8.
PLoS Genet ; 18(9): e1010412, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099310

RESUMEN

Homologous recombination (HR) is a double-strand break DNA repair pathway that preserves chromosome structure. To repair damaged DNA, HR uses an intact donor DNA sequence located elsewhere in the genome. After the double-strand break is repaired, DNA sequence information can be transferred between donor and recipient DNA molecules through different mechanisms, including DNA crossovers that form between homologous chromosomes. Regulation of DNA sequence transfer is an important step in effectively completing HR and maintaining genome integrity. For example, mitotic exchange of information between homologous chromosomes can result in loss-of-heterozygosity (LOH), and in higher eukaryotes, the development of cancer. The DNA motor protein Rdh54 is a highly conserved DNA translocase that functions during HR. Several existing phenotypes in rdh54Δ strains suggest that Rdh54 may regulate effective exchange of DNA during HR. In our current study, we used a combination of biochemical and genetic techniques to dissect the role of Rdh54 on the exchange of genetic information during DNA repair. Our data indicate that RDH54 regulates DNA strand exchange by stabilizing Rad51 at an early HR intermediate called the displacement loop (D-loop). Rdh54 acts in opposition to Rad51 removal by the DNA motor protein Rad54. Furthermore, we find that expression of a catalytically inactivate allele of Rdh54, rdh54K318R, favors non-crossover outcomes. From these results, we propose a model for how Rdh54 may kinetically regulate strand exchange during homologous recombination.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Cromosomas/metabolismo , ADN/genética , ADN Helicasas/genética , Reparación del ADN/genética , ADN-Topoisomerasas/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
EMBO J ; 41(6): e108736, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35147992

RESUMEN

As in human cells, yeast telomeres can be maintained in cells lacking telomerase activity by recombination-based mechanisms known as ALT (Alternative Lengthening of Telomeres). A hallmark of ALT human cancer cells are extrachromosomal telomeric DNA elements called C-circles, whose origin and function have remained unclear. Here, we show that extrachromosomal telomeric C-circles in yeast can be detected shortly after senescence crisis and concomitantly with the production of survivors arising from "type II" recombination events. We uncover that C-circles bind to the nuclear pore complex (NPC) and to the SAGA-TREX2 complex, similar to other non-centromeric episomal DNA. Disrupting the integrity of the SAGA/TREX2 complex affects both C-circle binding to NPCs and type II telomere recombination, suggesting that NPC tethering of C-circles facilitates formation and/or propagation of the long telomere repeats characteristic of type II survivors. Furthermore, we find that disruption of the nuclear diffusion barrier impairs type II recombination. These results support a model in which concentration of C-circles at NPCs benefits type II telomere recombination, highlighting the importance of spatial coordination in ALT-type mechanisms of telomere maintenance.


Asunto(s)
Poro Nuclear , Saccharomyces cerevisiae , Citoplasma , Humanos , Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Telómero/genética
10.
EMBO Rep ; 23(4): e53639, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156773

RESUMEN

DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI-FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)-mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error-free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error-free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI-deficient cells are exquisitely sensitive to ICL-inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR-mediated ICL repair is defective, and breaks are instead re-ligated by polymerase θ-dependent microhomology-mediated end-joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error-free ICL repair.


Asunto(s)
Anemia de Fanconi , ADN , Daño del ADN , Reparación del ADN , Replicación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos
11.
New Phytol ; 234(1): 295-310, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997964

RESUMEN

Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.


Asunto(s)
Begoniaceae , Begoniaceae/genética , Evolución Molecular , Genoma , Filogenia , Sintenía/genética
12.
Plant Biotechnol J ; 20(3): 538-553, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687252

RESUMEN

Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.


Asunto(s)
Dipterocarpaceae , Cromosomas , Dipterocarpaceae/genética , Fitomejoramiento , Extractos Vegetales
13.
Mol Ecol Resour ; 22(2): 768-785, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34549895

RESUMEN

Helminth diseases have long been a threat to the health of humans and animals. Roundworms are important organisms for studying parasitic mechanisms, disease transmission and prevention. The study of parasites in the giant panda is of importance for understanding how roundworms adapt to the host. Here, we report a high-quality chromosome-scale genome of Baylisascaris schroederi with a genome size of 253.60 Mb and 19,262 predicted protein-coding genes. We found that gene families related to epidermal chitin synthesis and environmental information processes in the roundworm genome have expanded significantly. Furthermore, we demonstrated unique genes involved in essential amino acid metabolism in the B. schroederi genome, inferred to be essential for the adaptation to the giant panda-specific diet. In addition, under different deworming pressures, we found that four resistance-related genes (glc-1, nrf-6, bre-4 and ced-7) were under strong positive selection in a captive population. Finally, 23 known drug targets and 47 potential drug target proteins were identified. The genome provides a unique reference for inferring the early evolution of roundworms and their adaptation to the host. Population genetic analysis and drug sensitivity prediction provide insights revealing the impact of deworming history on population genetic structure of importance for disease prevention.


Asunto(s)
Ascaridoidea , Preparaciones Farmacéuticas , Ursidae , Animales , Ascaridoidea/genética , Cromosomas , Humanos , Ursidae/genética
14.
Nat Commun ; 12(1): 5748, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593815

RESUMEN

Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers.


Asunto(s)
Proteína BRCA2/metabolismo , Neoplasias de la Mama/genética , Neoplasias Ováricas/genética , Proteína Fosfatasa 2/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Femenino , Predisposición Genética a la Enfermedad , Células HeLa , Humanos , Mutación , Fosforilación/genética , Unión Proteica/genética , Proteína Fosfatasa 2/genética , Recombinasa Rad51/metabolismo
15.
Genomics ; 113(6): 3696-3704, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34520805

RESUMEN

Clausena lansium (Lour.) Skeels (Rutaceae), recognized as wampee, is a widely distributed fruit tree which is utilized as a folk-medicine for treatment of several common diseases. However, the genomic information about this medicinally important species is still lacking. Therefore, we assembled the first genome of Clausena genus with a total length of 310.51 Mb and scaffold N50 of 2.24 Mb by using 10× Genomics technology. Further annotation revealed a total of 34,419 protein-coding genes, while repetitive elements covered 39.08% (121.36 Mb) of the genome. The Clausena and Citrus genus were found to diverge around 22 MYA, and also shared an ancient whole-genome triplication event with Vitis. Furthermore, multi-tissue transcriptomic analysis enabled the identification of genes involved in the synthesis of carbazole alkaloids. Altogether, these findings provided new insights into the genome evolution of Wampee species and highlighted the possible role of key genes involved in the carbazole alkaloids biosynthetic pathway.


Asunto(s)
Alcaloides , Clausena , Carbazoles , Clausena/genética , Frutas , Estructura Molecular
16.
Sci Rep ; 11(1): 14940, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294749

RESUMEN

The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.


Asunto(s)
Cromosomas Fúngicos/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Ciclo Celular , Segregación Cromosómica , ADN-Topoisomerasas de Tipo II/deficiencia , Electroforesis en Gel de Campo Pulsado , Técnicas de Inactivación de Genes , Mitosis , Saccharomyces cerevisiae/genética
17.
iScience ; 24(3): 102231, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33748714

RESUMEN

Functional telomeres in yeast lacking telomerase can be restored by rare Rad51- or Rad59-dependent recombination events that lead to type I and type II survivors, respectively. We previously proposed that polySUMOylation of proteins and the SUMO-targeted ubiquitin ligase Slx5-Slx8 are key factors in type II recombination. Here, we show that SUMOylation of Rad52 favors the formation of type I survivors. Conversely, preventing Rad52 SUMOylation partially bypasses the requirement of Slx5-Slx8 for type II recombination. We further report that SUMO-dependent proteasomal degradation favors type II recombination. Finally, inactivation of Rad59, but not Rad51, impairs the relocation of eroded telomeres to the Nuclear Pore complexes (NPCs). We propose that Rad59 cooperates with non-SUMOylated Rad52 to promote type II recombination at NPCs, resulting in the emergence of more robust survivors akin to ALT cancer cells. Finally, neither Rad59 nor Rad51 is required by itself for the survival of established type II survivors.

18.
Mol Cell ; 81(5): 1043-1057.e8, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421364

RESUMEN

Homologous recombination (HR) is essential for maintenance of genome integrity. Rad51 paralogs fulfill a conserved but undefined role in HR, and their mutations are associated with increased cancer risk in humans. Here, we use single-molecule imaging to reveal that the Saccharomyces cerevisiae Rad51 paralog complex Rad55-Rad57 promotes assembly of Rad51 recombinase filament through transient interactions, providing evidence that it acts like a classical molecular chaperone. Srs2 is an ATP-dependent anti-recombinase that downregulates HR by actively dismantling Rad51 filaments. Contrary to the current model, we find that Rad55-Rad57 does not physically block the movement of Srs2. Instead, Rad55-Rad57 promotes rapid re-assembly of Rad51 filaments after their disruption by Srs2. Our findings support a model in which Rad51 is in flux between free and single-stranded DNA (ssDNA)-bound states, the rate of which is controlled dynamically though the opposing actions of Rad55-Rad57 and Srs2.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Recombinación Homóloga , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Unión Proteica , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Proteína Fluorescente Roja
19.
Semin Cell Dev Biol ; 113: 57-64, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32912640

RESUMEN

TopBP1/Rad4/Dpb11 is an essential eukaryotic protein with important roles in DNA replication, DNA repair, DNA damage checkpoint activation, and chromosome segregation. TopBP1 serves as a scaffold to assemble protein complexes in a phosphorylation-dependent manner via its multiple BRCT-repeats. Recently, it has become clear that TopBP1 is repurposed to scaffold different processes dependent on cell cycle regulated changes in phosphorylation of client proteins. Here we review the functions of human TopBP1 in maintaining genome integrity during mitosis.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Genómica/métodos , Mitosis/genética , Proteínas Nucleares/genética , Humanos
20.
Methods Mol Biol ; 2153: 239-252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840784

RESUMEN

Precise control of the gene copy number in the model yeast Saccharomyces cerevisiae may facilitate elucidation of enzyme functions or, in cell factory design, can be used to optimize production of proteins and metabolites. Currently, available methods can provide high gene-expression levels but fail to achieve accurate gene dosage. Moreover, strains generated using these methods often suffer from genetic instability resulting in loss of gene copies during prolonged cultivation. Here we present a method, CASCADE, which enables construction of strains with defined gene copy number. With our present system, gene(s) of interest can be amplified up to nine copies, but the upper copy limit of the system can be expanded. Importantly, the resulting strains can be stably propagated in selection-free media.


Asunto(s)
Roturas del ADN de Doble Cadena , Amplificación de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Dosificación de Gen , Regulación Fúngica de la Expresión Génica , Ingeniería Metabólica , Técnicas Microbiológicas , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA