RESUMEN
In this paper, we investigate the phase behavior of a surfactant mixture comprising glyceryl stearate, potassium stearate, and stearic acid, in the presence of Carbopol, a commonly used thickener in personal care products. At low Carbopol concentrations (<0.03%), the surfactant mixture interacted with Carbopol electrostatically, increasing the degree of Carbopol swelling and, consequently, the overall viscosity. However, such an effect diminished as the Carbopol concentration was further increased. At a Carbopol concentration of 0.2%, two types of liquid crystalline surfactant structures, namely, multilamellar vesicles and lamellae, were observed between the swollen Carbopol domains. Although similar types of surfactant structures were present in a much more concentrated surfactant solution having a similar viscosity but without Carbopol, the lamellae in the presence of Carbopol were more ordered and with a larger d spacing. The increased ordering was probably induced by the interactions between the surfactants and Carbopol as the surfactants were confined between the swollen Carbopol domains.
RESUMEN
We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2 electroreduction. The unique combination of hydrophilic phosphorylcholine and hydrophobic fluorinated moieties in these polymers creates a fractal structure with mixed branched cylinders on the surface of gold nanoparticles (AuNPs). In the presence of these polymers, the CO faradaic efficiency improves by 50-80% in the range of -0.7 V to -0.9 V. The fractal structures have a domain size of â¼3 nm, showing enhanced mass transfer kinetics of CO2 approaching the catalyst surfaces without limiting ion diffusion. The phase-separated hydrophilic and hydrophobic domains offer separated channeling to water and CO2, as confirmed by attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and molecule dynamic (MD) simulations. H2O molecules permeate extensively into the polymer layer that adsorbs on zwitterions, forming continuous chains, while CO2 molecules strongly associate with the fluorinated tails of fluorinated polyzwitterions, with oxygen facing the positively charged amine groups. Overall, this coupling of zwitterion and fluorocarbon in a polymer material creates new opportunities for defining microenvironments of metallic nanocatalysts in hybrid structures.
RESUMEN
We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.
Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilcolinas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Fosfatidilcolinas/química , Estructura Molecular , Microscopía Electrónica de Transmisión , Membrana Dobles de Lípidos/químicaRESUMEN
Peptide-based hydrogels have great potential for applications in tissue engineering, drug delivery, and so on. We systematically synthesize, characterize, and investigate the self-assembly behaviors of a series of polypeptide-based penta-block copolymers by varying block sequences and lengths. The copolymers contain hydrophobic blocks of poly(γ-benzyl-l-glutamate) (PBG, Bx) and two kinds of hydrophilic blocks, poly(l-lysine) (PLL, Ky) and poly(ethylene glycol) (PEG, EG34), where x and y are the number of repeating units of each block, where PBG and PLL blocks have unique functions for nerve regeneration and cell adhesion. It shows that a sufficient length of the middle hydrophilic segment capped with hydrophobic end PBG blocks is required. They first self-assemble into flower-like micelles and sequentially form transparent hydrogels (as low as 2.3 wt %) with increased polymer concentration. The hydrogels contain a microscale porous structure, a desired property for tissue engineering to facilitate the access of nutrient flow for cell growth and drug delivery systems with high efficiency of drug storage. We hypothesize that the structure of Bx-Ky-EG34-Ky-Bx agglomerates is beyond micron size (transparent), while that of Ky-Bx-EG34-Bx-Ky is on the submicron scale (opaque). We establish a working strategy to synthesize a polypeptide-based block copolymer with a wide window of sol-gel transition. The study offers insight into rational polypeptide hydrogel design with specific morphology, exploring the novel materials as potential candidates for neural tissue engineering.
Asunto(s)
Tetranitrato de Pentaeritritol , Rubiaceae , Hidrogeles/química , Polímeros/química , Polietilenglicoles/química , Péptidos/química , MicelasRESUMEN
We report a facile method to prepare polymer-grafted plasmonic metal nanoparticles (NPs) that exhibit pH-responsive surface-enhanced Raman scattering (SERS). The concept is based on the use of pH-responsive polymers, such as poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), as multidentate ligands to wrap around the surface of NPs instead of forming polymer brushes. Upon changing the solvent quality, the grafted pH-responsive polymers would drive reversible aggregation of NPs, leading to a decreased interparticle distance. This creates numerous hot spots, resulting in a secondary enhancement of SERS as compared to the SERS from discrete NPs. For negatively charged PAA-grafted NPs, the SERS response at pH 2.5 showed a secondary enhancement of up to 104-fold as compared to the response for discrete NPs at pH 12. Similarly, positively charged PAH-grafted AuNPs showed an opposite response to pH. We demonstrated that enhanced SERS with thiol-containing and charged molecular probes was indeed from the pH-driven solubility change of polymer ligands. Our method is different from the conventional SERS sensors in the solid state. With pH-responsive polymer-grafted NPs, SERS can be performed in solution with high reproducibility and sensitivity but without the need for sample pre-concentration. These findings could pave the way for innovative designs of polymer ligands for metal NPs where polymer ligands do not compromise interparticle plasmon coupling.
RESUMEN
Stimuli-responsive microgels, composed of small beads with soft, deformable polymer networks swollen through a combination of synthetic control over the polymer and its interaction with water, form a versatile platform for development of multifunctional and biocompatible sensors. The interfacial structural variation of such materials at a nanometer length scale is essential to their function, but not yet fully comprehended. Here, we take advantage of the plasmonic response of a gold nanorod embedded in a thermoresponsive microgel (AuNR@PNIPMAm) to monitor structural changes in the hydrogel directly near the nanorod surface. By direct comparison of the plasmon response against measurements of the hydrogel structure from dynamic light scattering and nuclear magnetic resonance, we find that the microgel shell of batch-polymerized AuNR@PNIPMAm exhibits a heterogeneous volume phase transition reflected by different onset temperatures for changes in the hydrodyanmic radius (RH) and plasmon resonance, respectively. The new approach of contrasting plasmonic response (a measure of local surface hydrogel structure) with RH and relaxation times paves a new path to gain valuable insight for the design of plasmonic sensors based on stimuli-responsive hydrogels.
RESUMEN
We report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae. Monomers are miscible with DPPC and DPPG initially, while polymerization drives polymers to the DHPC-rich domain, resulting in a polymer nanoweb supported by the outcomes of small angle neutron scattering, differential scanning calorimetry, and transmission electron microscopy.
RESUMEN
Many diseases, especially cancer, are caused by the abnormal expression of non-coding microRNAs (miRNAs), which regulate gene expression, leading to the development of miRNA-based therapeutics. Synthetic miRNA inhibitors have shown promising efficacy in blocking the activity of aberrant miRNAs that are upregulated in disease-specific pathologies. On the other hand, miRNAs that aid in preventing certain diseases and are reduced in expression in the disease state need different strategies. To tackle this, miRNA mimics, which mimic the activity of endogenous miRNAs, can be delivered for those miRNAs downregulated in different disease states. However, the delivery of miRNA mimics remains a challenge. Here, we report a cationic polylactic-co-glycolic acid (PLGA)-poly-L-histidine delivery system to deliver miRNA mimics. We chose miR-34a mimics as a proof of concept for miRNA delivery. miR-34a-loaded PLGA-poly-L-histidine nanoparticles (NPs) were formulated and biophysically characterized to analyze the structural properties of miRNA mimic-loaded NPs. In vitro efficacy was determined by investigating miR-34a and downstream target levels and performing cell viability and apoptosis assays. We confirmed in vivo efficacy through prolonged survival of miR-34a NP-treated A549-derived xenograft mice treated intratumorally. The results of these studies establish PLGA-poly-L-histidine NPs as an effective delivery system for miRNA mimics for treating diseases characterized by downregulated miRNAs.
RESUMEN
HYPOTHESIS: A well-defined discoidal bicelle composed of three lipids, specifically zwitterionic long-chain 1,2dipalmitoyl phosphocholine (DPPC) and short-chain 1,2dihexanoyl phosphocholine (DHPC) doped with anionic 1,2dipalmitoyl phosphoglycerol (DPPG) provides a generalized template for the synthesis of hydrophobic polymer nano-rings. The lipid molar ratio of DPPC/DHPC/DPPG is 0.71/0.25/0.04. The detailed investigation and discussion were based on styrene but tested on three other vinyl monomers. EXPERIMENTS: The structure of nano-rings is identified through the detailed analysis of small angle X-ray/neutron scattering (SAXS and SANS) data and transmission electron micrographs (TEM), supported by the differential scanning calorimetric (DSC) data before and after polymerization. The investigation covers samples with a styrene-to-lipid ratio ranged varied from 1:50 to 1:10. FINDINGS: The styrene monomers are initially located at both the discoidal planar (long-chain lipid rich) and rim (short-chain lipid rich) regions. During polymerization, they migrate to the more fluid rim regionsection. The formation mechanism involves the interplay of hydrophobic interaction, mismatched miscibility of polystyrene between the ordered and disordered phases, and crystallinity of the long lipid acyl chains. This facile synthesis is proven applicable for several hydrophobic monomers. The well-defined nano-rings greatly enhance the interfacial area and have the potential to be the building blocks for functional materials, if monomers are incorporated with desirable functions, for future applications.
Asunto(s)
Fosforilcolina , Polímeros , Dispersión del Ángulo Pequeño , Polimerizacion , Difracción de Rayos X , Éteres Fosfolípidos , Estirenos , Membrana Dobles de Lípidos/químicaRESUMEN
Manipulating molecular and supramolecular interactions within cellulose nanocrystals (CNCs) to introduce different levels of assemblies combined with multiple functionalities is required for the development of degradable smart materials from renewable resources. To attain hierarchical structures and stimuli-responsive properties, a new class of liquid crystalline cellulosic hybrid materials is synthesized. Herein, main-chain rigid-rod-like oxidized cellulose (CNC-COOH) is prepared from a Cellulose Whatman filter paper (Cellulose W.P.) by acid hydrolysis and oxidized using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Thermotropic LC molecule, 4-cyano-4'-hydroxybiphenyl with a 12-methylene spacer (CB12-OH) is grafted onto the carboxylic acid group of CNC-COOH via Steglich esterification. The liquid crystalline functionalized CNCs cellulose nanocrystals (CNC-COO-CB12) are readily soluble in DMSO and ionic liquids. The extent of functionalization and structure of CNC-COO-CB12 are confirmed by solution-state 1H NMR and supported by other characterization techniques. We investigate the interplay of liquid crystalline orientational order of CNCs and cyanobiphenyl (CB12), and the supramolecular hydrogen bonding of CNCs within CNC-COO-CB12 and compare it with CNC-COOH. The introduction of thermotropic CB12 side chains onto rigid-rod CNCs shows the exclusive formation of smectic mesophases from the assemblies of CB12 with the absence of the cholesteric mesophase typically observed from CNC-COOH as verified by temperature-controlled SAXS (T-SAXS). This is further verified by UV-visible and SEM studies that show CNC-COO-CB12 forms smectic domains while CNC-COOH forms a visible light reflecting cholesteric mesophase in dried films. Thus, the interplay of liquid crystalline order of CNCs and CB12 and supramolecular hydrogen bonding of CNCs results in ordered, smectic-mesostructured CNCs for use in stimuli-responsive functional materials.
RESUMEN
We report a new design of polymer-patched gold nanoparticles (AuNPs) with controllable interparticle interactions in terms of their direction and strength. Patchy AuNPs (pAuNPs) are prepared through hydrophobicity-driven surface dewetting under deficient ligand exchange conditions. Using the exposed surface on pAuNPs as seeds, a highly controllable growth of AuNPs is carried out via seed-mediated growth while retaining the size of polymer domains. As guided by ligands, these pAuNPs can self-assemble directionally in two ways along the exposed surface (head-to-head) or the polymer-patched surface of pAuNPs (tail-to-tail). Control of the surface asymmetry/coverage on pAuNPs provides an important tool in balancing interparticle interactions (attraction vs. repulsion) that further tunes assembled nanostructures as clusters and nanochains. The self-assembly pathway plays a key role in determining the interparticle distance and therefore plasmon coupling of pAuNPs. Our results demonstrate a new paradigm in the directional self-assembly of anisotropic building blocks for hierarchical nanomaterials with interesting optical properties.
RESUMEN
Peptide nucleic acids (PNAs) are nucleic acid analogs with superior hybridization properties and enzymatic stability than deoxyribonucleic acid (DNA). In addition to gene targeting applications, PNAs have garnered significant attention as bio-polymer due to the Watson-Crick -based molecular recognition and flexibility of synthesis. Here, we engineered PNA amphiphiles using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γPNA) amphiphiles self-assemble into spherical vesicles. Further, we formulate nano-assemblies using the amphiphilic γPNA as a polymer via ethanol injection-based protocols. We perform comprehensive head-on comparison of the physicochemical and cellular uptake properties of PNA derived self- and nano-assemblies. Small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) analysis reveal ellipsoidal morphology of γPNA nano-assemblies that results in superior cellular delivery compate to the spherical self-assembly. Next, we compare the functional activities of γPNA self-and nano-assemblies in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis-based assays. Overall, we establish that γPNA amphiphile is a functionally active bio-polymer to formulate nano-assemblies for a wide range of biomedical applications.
RESUMEN
Antimicrobial pentatopic 2,2':6',2''-terpyridines that form 3-D supramolecular hexagonal prisms with Cd2+ through coordination driven self-assembly can be entrapped by lipid discoidal bicelles, composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dihexanoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) lipid, forming a well-defined nanocomplex. Structural characterization performed by very small angle neutron scattering, small angle X-ray scattering and transmission electron microscopy suggests that the hexagonal prisms are preferably located at the rim of bicellar discs with the hexagonal face in parallel with the bilayers, instead of face-to-face stacking. Such a configuration reduces the π-π interaction and consequently enhances the fluorescence emission. Since novel supramolecules were reported to have antibiotic functions, this study provides insight into the interactions of antimicrobial supermolecules with lipid membranes, leading to potential theranostic applications.
Asunto(s)
Antibacterianos , Membrana Dobles de Lípidos , Antibacterianos/farmacología , Dispersión del Ángulo PequeñoRESUMEN
Control of polymer assemblies in solution is of great importance to determine the properties and applications of these polymer nanostructures. We report a novel co-self-assembly strategy to control the self-assembly outcomes of a micelle-forming amphiphilic block copolymer (BCP) of poly(ethylene oxide) (PEO) and poly[3-(trimethoxysilyl)propyl methacrylate] (PTMSPMA), PEO114-b-PTMSPMA228. With a reactive and hydrophobic additive tetraethyl orthosilicate (TEOS), the assembly nanostructures of PEO114-b-PTMSPMA228 are tunable. The swelling of the PTMSPMA block by hydrophobic TEOS increases the hydrophobic-to-hydrophilic ratio that enables a continuous morphological evolution from spherical micelles to vesicles and eventually to large compound vesicles. TEOS that co-hydrolyzes with the PTMSPMA block can further stabilize and fix these hybrid nanostructures. With high TEOS concentrations, these polymer assemblies can be further converted through thermal annealing into unique silica nanomaterials, including nanospheres, hollow nanoparticles with dual shells, and mesoporous silica frameworks that cannot be synthesized through conventional syntheses otherwise.
RESUMEN
The rupture of a pyogenic liver abscess (PLA) with peritonitis is a rare occurrence but a surgical emergency with a high mortality rate in the case of gas-forming PLA. Rare cases of ruptured PLA that recovered completely with only medical treatment have been reported. This paper reports a case of a large PLA rupture with peritonitis. In this case, surgical intervention was too risky because of the patient's age and poor general condition. The patient recovered fully with appropriate antibiotic therapy and sufficient percutaneous drainage. Therefore, medical treatment may be considered an alternative option in cases of a ruptured large PLA with peritonitis if surgical intervention is too risky.
Asunto(s)
Absceso Piógeno Hepático , Peritonitis , Drenaje , Humanos , Klebsiella pneumoniae , Absceso Piógeno Hepático/complicaciones , Absceso Piógeno Hepático/diagnóstico , Absceso Piógeno Hepático/tratamiento farmacológico , Peritonitis/diagnóstico , Peritonitis/tratamiento farmacológico , Peritonitis/etiología , Rotura , Rotura Espontánea , Resultado del TratamientoRESUMEN
In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.
RESUMEN
The spontaneously formed structures of physiologically relevant lipid model membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1,2-hexanoyl-sn-glycero-3-phosphocholine have been evaluated in depth using small angle neutron scattering. Although a common molar ratio of long- to short- chain phospholipids (~4) as reported in many bicellar mixtures was used, discoidal bicelles were not found as the major phase throughout the range of lipid concentration and temperature studied, indicating that the required condition for the formation of bicelle is the immiscibility between the long- and short- chain lipids, which were in the gel and Lα phases, respectively, in previous reports. In this study, all lipids are in the Lα phase. The characterization outcome suggests that the spontaneous structures tie strongly with the physical parameters of the system such as melting transition temperature of the long-chain lipid, total lipid concentration and charge density of the system. Multilamellar vesicles, unilamellar vesicles, ribbons and perforated lamellae can be obtained based on the analysis of the small angle neutron scattering results, leading to the construction of structural diagrams. This report provides the important map to choose suitable lipid systems for the structural study of membrane-associated proteins, design of theranostic nanocarriers or other related research fields.
Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Fosfolípidos/química , Liposomas Unilamelares/química , Membrana Dobles de Lípidos/metabolismo , Fluidez de la Membrana , Lípidos de la Membrana/metabolismo , Neutrones , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfolípidos/metabolismo , Dispersión del Ángulo PequeñoRESUMEN
Three dimensional (3D) supramolecules with giant cavities are attractive due to their wide range of applications. Herein, we used pentatopic terpyridine ligands with three types of coordination moieties to assemble two giant supramolecular hexagonal prisms with a molecular weight up to 42â¯608 and 43â¯569 Da, respectively. Within the prisms, two double-rimmed Kandinsky Circles serve as the base surfaces as well as the templates for assisting the self-sorting during the self-assembly. Additionally, hierarchical self-assembly of these supramolecular prisms into tubular-like nanostructures was fully studied by scanning tunneling microscopy (STM) and small-angle X-ray scattering (SAXS). Finally, these supramolecular prisms show good antimicrobial activities against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA) and Bacillus subtilis (B. subtilis).