Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Transl Med ; 14(8): e1801, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107881

RESUMEN

BACKGROUND: As the leading cause of end-stage liver disease, nonalcoholic fatty liver disease (NAFLD) is mainly induced by lipid dyshomeostasis. The translation of endogenous circular RNAs (circRNAs) is closely related to the progression of various diseases, but the involvement of circRNAs in NAFLD has not been determined. METHODS: Combined high-throughput circRNA profiles were used to identify circRNAs with translational potential. The underlying molecular mechanisms were investigated by RNA sequencing, pull-down/MS and site-specific mutagenesis. RESULTS: In this study, we focused on circ-SLC9A6, an abnormally highly expressed circRNA in human and mouse liver tissue during NAFLD development that exacerbates metabolic dyshomeostasis in hepatocytes by encoding a novel peptide called SLC9A6-126aa in vivo and in vitro. YTHDF2-mediated degradation of m6A-modified circ-SLC9A6 was found to be essential for the regulation of SLC9A6-126aa expression. We further found that the phosphorylation of SLC9A6-126aa by AKT was crucial for its cytoplasmic localization and the maintenance of physiological homeostasis, whereas high-fat stress induced substantial translocation of unphosphorylated SLC9A6-126aa to the nucleus, resulting in a vicious cycle of lipid metabolic dysfunction. Nuclear SLC9A6-126aa promotes transcriptional activation of the target gene CD36 and enhances its occupancy of the CD36 promoter locus by regulating MOF-mediated histone H4K16 acetylation. Hepatic CD36 depletion significantly ameliorated hyperactivated MAPK signalling and lipid disturbance in SLC9A6-126aa transgenic mice. Clinically, increasing levels of SLC9A6-126aa were observed during NAFLD progression and were found to be positively correlated with the CD36 and MAPK cascades. CONCLUSION: This study revealed the role of circ-SLC9A6-derived SLC9A6-126aa in the epigenetic modification-mediated regulation of lipid metabolism. Our findings may provide promising therapeutic targets for NAFLD and new insights into the pathological mechanisms of metabolic diseases. HIGHLIGHTS: Under normal circumstances, driven by m6A modification, YTHDF2 directly recognizes and degrades circ-SLC9A6, thereby inhibiting the translation of SLC9A6-126aa. Additionally, AKT1 phosphorylates and inhibits the nuclear translocation of SLC9A6-126aa. In NAFLD, lipid overload leads to YTHDF2 and AKT1 deficiency, ultimately increasing the expression and nuclear import of SLC9A6-126aa. Nuclear SLC9A6-126aa binds directly to the CD36 promoter and initiates CD36 transcription, which induces lipid dyshomeostasis.


Asunto(s)
Antígenos CD36 , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ratones , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Metabolismo de los Lípidos/genética , Péptidos/metabolismo , Péptidos/genética , Homeostasis/genética , Masculino , Ratones Endogámicos C57BL
2.
Clin Interv Aging ; 19: 517-527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38528884

RESUMEN

Purpose: To investigate the clinical value of serum lysophosphatidylcholine (LPC) as a predictive biomarker for determining disease severity and mortality risk in hospitalized elderly patients with community-acquired pneumonia (CAP). Methods: This prospective, single-center study enrolled 208 elderly patients, including 67 patients with severe CAP (SCAP) and 141 with non-SCAP between November 1st, 2020, and November 30th, 2021 at the Qingdao Municipal Hospital, Shandong Province, China. The demographic and clinical parameters were recorded for all the included patients. Serum LPC levels were measured on day 1 and 6 after admission using ELISA. Propensity score matching (PSM) was used to balance the baseline variables between SCAP and non-SCAP patient groups. Receiver operative characteristic (ROC) curve analysis was used to compare the predictive performances of LPC and other clinical parameters in discriminating between SCAP and non-SCAP patients and determining the 30-day mortality risk of the hospitalized CAP patients. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with SCAP. Cox proportional hazard regression analysis was used to determine if serum LPC was an independent risk factor for the 30-day mortality of CAP patients. Results: The serum LPC levels at admission were significantly higher in the non-SCAP patients than in the SCAP patients (P = 0.011). Serum LPC level <24.36 ng/mL, and PSI score were independent risk factors for the 30-day mortality in the elderly patients with CAP. The risk of 30-day mortality in the elderly CAP patients with low serum LPC levels (< 24.36ng/mL) was >5-fold higher than in the patients with high serum LPC levels (≥ 24.36ng/mL). Conclusion: Low serum LPC levels were associated with significantly higher disease severity and 30-day mortality in the elderly patients with CAP. Therefore, serum LPC is a promising predictive biomarker for the early identification of elderly CAP patients with poor prognosis.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Humanos , Anciano , Lisofosfatidilcolinas , Estudios Prospectivos , Pronóstico , Biomarcadores , Índice de Severidad de la Enfermedad , Gravedad del Paciente , Estudios Retrospectivos
3.
Cell Death Dis ; 15(2): 154, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378757

RESUMEN

Intestinal ischemia/reperfusion (I/R) injury is a typical pathological course in the clinic with a high morbidity rate. Recent research has pointed out the critical role of ubiquitination during the occurrence and development of intestinal I/R by precisely mediating protein quality control and function. Here, we conducted an integrated multiomic analysis to identify critical ubiquitination-associated molecules in intestinal I/R and identified endoplasmic reticulum-located HRD1 as a candidate molecule. During intestinal I/R, excessive ER stress plays a central role by causing apoptotic pathway activation. In particular, we found that ER stress-mediated apoptosis was mitigated by HRD1 knockdown in intestinal I/R mice. Mechanistically, TMEM2 was identified as a new substrate of HRD1 in intestinal I/R by mass spectrometry analysis, which has a crucial role in attenuating apoptosis and promoting non-canonical ER stress resistance. A strong negative correlation was found between the protein levels of HRD1 and TMEM2 in human intestinal ischemia samples. Specifically, HRD1 interacted with the lysine 42 residue of TMEM2 and reduced its stabilization by K48-linked polyubiquitination. Furthermore, KEGG pathway analysis revealed that TMEM2 regulated ER stress-mediated apoptosis in association with the PI3k/Akt signaling pathway rather than canonical ER stress pathways. In summary, HRD1 regulates ER stress-mediated apoptosis through a non-canonical pathway by ubiquitinating TMEM2 and inhibiting PI3k/Akt activation during intestinal I/R. The current study shows that HRD1 is an intestinal I/R critical regulator and that targeting the HRD1/TMEM2 axis may be a promising therapeutic approach.


Asunto(s)
Estrés del Retículo Endoplásmico , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Apoptosis , Estrés del Retículo Endoplásmico/fisiología , Isquemia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reperfusión , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA