RESUMEN
Alpinia officinarum Hance is rich in carbohydrates and is flavored by natives. The polysaccharide fraction 30 is purified from the rhizome of A. officinarum Hance (AOP30) and shows excellent immunoregulatory ability when administered to regulate immunity. However, the effect of AOP30 on the intestinal epithelial barrier is not well understood. Therefore, the aim of this study is to investigate the protective effect of AOP30 on the intestinal epithelial barrier using a lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction model and further explore its underlying mechanisms. Cytotoxicity, transepithelial electrical resistance (TEER) values, and Fluorescein isothiocyanate (FITC)-dextran flux are measured. Simultaneously, the protein and mRNA levels of tight junction (TJ) proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, are determined using Western blotting and reverse-transcription quantitative polymerase chain reaction methods, respectively. The results indicate that AOP30 restores the LPS-induced decrease in the TEER value and cell viability. Furthermore, it increases the mRNA and protein expression of ZO-1, Occludin, and Claudin-1. Notably, ZO-1 is the primary tight junction protein altered in response to LPS-induced intestinal epithelial dysfunction. Additionally, AOP30 downregulates the production of TNFα via the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, the findings of this study indicate that AOP30 can be developed as a functional food ingredient or natural therapeutic agent for addressing intestinal epithelial barrier dysfunction. It sheds light on the role of AOP30 in improving intestinal epithelial function.
Asunto(s)
Alpinia , Mucosa Intestinal , Lipopolisacáridos , FN-kappa B , Polisacáridos , Rizoma , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Humanos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Rizoma/química , Polisacáridos/farmacología , Células CACO-2 , Alpinia/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismoRESUMEN
Alpinia officinarum Hance, a well known agricultural product in the Lei Zhou peninsula, is generally rich in polysaccharides. In order to enhance the use of A. officinarum Hance polysaccharides (AOP) in functional food, AOP was extracted using an ultrasonic-assisted extraction method, and the ultrasonic extraction parameters of AOP was optimized. Furthermore, this study investigated the physicochemical and antioxidant activities of AOPs. In addition, the structural properties were preliminarily determined using Fourier-transform infrared spectroscopy (FTIR), high performance size exclusion chromatography, and a Zetasizer. Ultimately, this study explored the mechanism underlying the antioxidant activities of AOP. The results showed that the optimal ultrasonic-assisted extraction parameters were as follows: ultrasonic time, 6 min; ratio of water to material, 12 mL/g; and ultrasonic power, 380 W. Under these conditions, the maximum yield of AOPs was 5.72%, indicating that ultrasonic-assisted extraction technology is suitable for extracting AOPs due to the reduced time and water usage. Additionally, AOPs were purified using graded alcohol precipitation, resulting in three fractions (AOP30, AOP50, and AOP70). AOP30 had the lowest molecular weight of 11.07 kDa and mainly consisted of glucose (89.88%). The half inhibitory concentration (IC50) value of AOP30 and AOP70 was lower than that of AOP50 in the ability to scavenge the ABTS radical, while a reverse trend was observed in reducing ferric ions. Notably, the antioxidant activities of AOPs were highly correlated with their polydispersity index (Mw/Mn) and Zeta potential. AOP30, a negatively charged acidic polysaccharide fraction, exhibited electron donating capacities. Additionally, it displayed strong antioxidant abilities through scavenging 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals and reducing ferric ions. In conclusion, the present study suggests that AOP30 could be developed as an antioxidant ingredient for the food industry.