Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Neurobiol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347285

RESUMEN

Aging is a natural and inevitable process of organisms. With the intensification of population aging, research on aging has become a hot topic of global attention. The most obvious manifestation of human aging is the aging of brain function, which has been linked to the development of neurodegenerative diseases. In this study, COP-22, a mono-carbonyl curcumin derivative, was evaluated for its anti-aging ability, especially its ability to resist brain aging induced by D-galactose (D-gal) in mice. For brain protection, COP-22 could resist D-gal-induced oxidative stress by increasing the activity of antioxidative defense enzymes and enhancing antioxidant capacity in the brain tissue; COP-22 could improve the dysfunction of the cholinergic system by decreasing the increased activity of acetylcholinesterase and increasing the reduced content of acetylcholine induced by D-gal; and COP-22 could protect nerve cells of the brain. Further, western blot was used to determine related proteins of the brain. We found that COP-22 could effectively protect against brain injury (SIRT1, p53, p21, and p16) by inhibiting oxidative stress (Nrf2 and HO-1), inflammation (IL-6 and TNF-α), and apoptosis (Bax and caspase-3) in D-gal-induced aging mice. Additionally, COP-22 demonstrated the ability to reduce oxidative stress in serum and liver caused by D-gal, as well as relieve the damages in the liver and kidney induced by D-gal. These results indicated that COP-22 had potential anti-aging activity and could be used in the therapy of aging and aging-associated diseases like Alzheimer disease.

2.
J Mater Chem B ; 11(6): 1302-1311, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651865

RESUMEN

Enzymatic esterification plays an important role in the fields of chemistry and biotechnology. In this study, lipase was immobilized on an ionic liquid (IL)-modified magnetic metal-organic framework (MOF) and used to synthesize isoamyl acetate. The immobilized lipase (PPL-ILs/Fe3O4@MOF) showed 2.1-fold and 1.8-fold higher activity compared to the free and immobilized lipase without ILs (PPL-Fe3O4@MOF), respectively. In addition, the anti-denaturant ability and reusability of the PPL-ILs/Fe3O4@MOF were also higher than those of other samples. The ester yield reached 75.1% when the biocatalyst was used to synthesize isoamyl acetate in hexane. The synthesized supports supplied a good microenvironment for the immobilized lipase through multiple interactions. Results of the structural analysis showed that the conformation state of lipase molecules changed after immobilization. The magnetism of the prepared biocatalyst makes it easy to recycle so that PPL-ILs/Fe3O4@MOF maintained 70.2% of the initial activity after eight cycles. The prepared composite materials exhibited good potential in lipase immobilization with enhanced catalytic ability and stability.


Asunto(s)
Líquidos Iónicos , Estructuras Metalorgánicas , Líquidos Iónicos/química , Ésteres , Estructuras Metalorgánicas/química , Enzimas Inmovilizadas/química , Lipasa/química , Fenómenos Magnéticos
3.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202669

RESUMEN

With the intensification of population aging, aging-related diseases are attracting more and more attention, thus, the study of aging mechanisms and anti-aging drugs is becoming increasingly urgent. Resveratrol is a potential candidate as an anti-aging agent, but its low bioavailability limits its application in vivo. In this work, a 4-hydroxy-3'-trifluoromethoxy-substituted resveratrol derivative (4-6), owing to its superior cell accumulation, could inhibit NO production in an inflammatory cell model, inhibit oxidative cytotoxicity, and reduce ROS accumulation and the population of apoptotic cells in an oxidative stress cell model. In D-galactose (D-gal)-stimulated aging mice, 4-6 could reverse liver and kidney damage; protect the serum, brain, and liver against oxidative stress; and increase the body's immunity in the spleen. Further D-gal-induced brain aging studies showed that 4-6 could improve the pathological changes in the hippocampus and the dysfunction of the cholinergic system. Moreover, protein expression related to aging, oxidative stress, and apoptosis in the brain tissue homogenate measured via Western blotting also showed that 4-6 could ameliorate brain aging by protecting against oxidative stress and reducing apoptosis. This work revealed that meta-trifluoromethoxy substituted 4-6 deserved to be further investigated as an effective anti-aging candidate drug.


Asunto(s)
Envejecimiento , Estrés Oxidativo , Animales , Ratones , Resveratrol/farmacología , Hígado , Apoptosis , Galactosa
4.
Front Pharmacol ; 14: 1304801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235117

RESUMEN

The aging population has become an issue that cannot be ignored, and research on aging is receiving increasing attention. PL 1-3 possesses diverse pharmacological properties including anti-oxidative stress, inhibits inflammatory responses and anti-apoptosis. This study showed that PL 1-3 could protect mice, especially the brain, against the aging caused by D-galactose (D-gal). D-gal could cause oxidative stress, inflammation, apoptosis and tissue pathological injury and so on in aging mice. The treatment of PL 1-3 could increase the anti-oxidative stress ability in the serum, liver, kidney and brain of aging mice, via increasing the total antioxidant capacity and the levels of anti-oxidative defense enzymes (superoxide dismutase, glutathione peroxidase, and catalase), and reducing the end product of lipid peroxidation (malondialdehyde). In the brain, in addition to the enhanced anti-oxidative stress via upregulating the level of the nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, PL 1-3 could improve the dysfunction of the cholinergic system via reducing the active of acetylcholinesterase so as to increase the level of acetylcholine, increase the anti-inflammatory and anti-apoptosis activities via downregulating the expressions of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and pro-apoptosis proteins (Bcl-2 associated X protein and Caspase-3) in the D-gal-induced aging mice, to enhance the anti-aging ability via upregulating the expression of sirtuin 1 and downregulating the expressions of p53, p21, and p16. Besides, PL 1-3 could reverse the liver, kidney and spleen damages induced by D-gal in aging mice. These results suggested that PL 1-3 may be developed as an anti-aging drug for the prevention and intervention of age-related diseases.

5.
Biomed Pharmacother ; 156: 113893, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279719

RESUMEN

Compounds containing Michael acceptor units display a wide variety of biological effects, and have attracted much attention in medicinal chemistry. In this paper, we designed and synthesized a panel of para-quinone methides (p-QMs) derivatives, classified as electron-deficient alkenes, and evaluated their cytotoxicity against cancer cells. These results revealed that drawing substituents into the ortho-position of the phenyl ring could obviously strengthen the cytotoxicity of p-QMs derivatives compared with that of meta- and para-substituents. Further biological studies demonstrated that the cytotoxicity of p-QMs derivatives originated from their ROS-generation abilities, which could further disrupt the redox balance, lipid peroxidation, the loss of MMP, cell cycle arrest at G0/G1 phase and apoptosis. 1h also exhibited potent antitumor activity through inhibiting TrxR and activating Bax and caspase 3 expression in vitro and in vivo, and 1h had certain safety in vivo. Moreover, the electrophilicity of the Michael acceptor, which could covalently modify with the TrxR, play a potent role in the ROS generation. From the perspective of chemistry, we affirmed that p-QMs derivatives could rapidly covalent binding with cysteamine, and the addition product was characterized by 1H NMR. Together, these new p-QMs derivatives may possess potential as leads for development of effective antitumor agents.


Asunto(s)
Antineoplásicos , Indolquinonas , Especies Reactivas de Oxígeno/metabolismo , Indolquinonas/farmacología , Indolquinonas/química , Antineoplásicos/química , Apoptosis
6.
Chem Biol Interact ; 367: 110189, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36156276

RESUMEN

A series of ß-ionone-curcumin hybrid derivatives were designed and chosen to merge the biological characteristics of two parent molecules and to obtain a leading compound with higher biological activity. Through the initial screening, the structure activity relationship of their hybrid derivatives as inhibitors of nitric oxide (NO) production showed that meta-substituted derivatives exhibited the best inhibitory activity, among which 1h was the best one. In lipopolysaccharide-induced Raw264.7 macrophage cells, 1h showed anti-inflammatory activity by inhibiting the productions of NO and reactive oxygen species, the expressions of Interleukin-1ß and tumor necrosis factor-α, and the translocation of nuclear factor (NF)-κB from the cytosol to the nucleus. Furthermore, molecular docking simulation displayed that 1h could interact with cluster of differentiation 14 to inhibit the toll-like receptor 4/NF-κB signaling. In dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) of mice, 100 mg/kg of 1h could significantly reduce the colon length shortening and protect against colon injury, liver injury and oxidative stress in DSS-induced UC of mice. Besides, 1h was safety in vivo. In conclusion, 1h was the potential anti-inflammatory agent, and further investigations were underway in our laboratory.


Asunto(s)
Colitis Ulcerosa , Curcumina , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/patología , Curcumina/farmacología , Curcumina/uso terapéutico , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Norisoprenoides , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Mol Pharm ; 19(12): 4576-4587, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-35971845

RESUMEN

In recent years, piperlongumine (PL) having specific cytotoxicity has attracted considerable attention for anticancer activity. Through structural modification, the active derivative PL 1-3 shows potential anti-inflammatory activity and low cytotoxicity, but its water solubility is low. Here, PL 1-3-loaded bovine serum albumin nanoparticles (1-3 NPs) were prepared and characterized, which can improve the dissolution. 1-3 NPs exhibited effective hepatoprotective effects on lipopolysaccharide/d-galactosamine-induced acute liver injury of mice, which was similar to liver injury in clinical settings. 1-3 NPs treatment can inhibit inflammation, oxidative stress, and apoptosis via the downregulation of NF-κB signaling pathways, the activation of Nrf2/HO-1 signaling pathways, and the inhibition of expression of Bax and caspase 3 proteins. The above results demonstrated that PL 1-3-loaded bovine serum albumin nanoparticles possessed potential value in intervention of inflammation-based liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas , Ratones , Animales , Galactosamina/farmacología , Lipopolisacáridos/farmacología , Albúmina Sérica Bovina/metabolismo , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
8.
Front Genet ; 13: 912711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846121

RESUMEN

A single-cell sequencing data set has always been a challenge for clustering because of its high dimension and multi-noise points. The traditional K-means algorithm is not suitable for this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-K-means clustering algorithm. The algorithm adds the dynamic radius parameter to the calculation. It flexibly adjusts the active radius according to the data characteristics, which can eliminate the influence of noise points and optimize the clustering results. At the same time, the algorithm calculates the weight through the dissimilarity density of the data set, the average contrast of candidate clusters, and the dissimilarity of candidate clusters. It obtains a set of high-quality initial center points, which solves the randomness of the K-means algorithm in selecting the center points. Finally, compared with similar algorithms, this algorithm shows a better clustering effect on single-cell data. Each clustering index is higher than other single-cell clustering algorithms, which overcomes the shortcomings of the traditional K-means algorithm.

9.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563293

RESUMEN

Acute liver injury (ALI) is a severe syndrome and can further develop into acute liver failure (ALF) which can lead to high mortality and cause irreversible liver injuries in the clinic. Liver transplantation is the most common treatment; however, liver donors are lacking, and the progression of ALF is rapid. Nanoparticles can increase the bioavailability and the targeted accumulation of drugs in the liver, so as to significantly improve the therapeutic effect of ALI. Curcumin derivative COP-22 exhibits low cytotoxicity and effective anti-inflammatory activity; however, it has poor water solubility. In this study, COP-22-loaded bovine serum albumin (BSA) nanoparticles (22 NPs) were prepared and characterized. They exhibit effective hepatoprotective effects by inhibiting inflammation, oxidative stress, and apoptosis on Lipopolysaccharide/D-Galactosamine-induced acute liver injury of mice. The anti-inflammatory activity of 22 NPs is related to the regulation of the NF-κB signaling pathways; the antioxidant activity is related to the regulation of the Nrf2 signaling pathways; and the apoptosis activity is related to mitochondrial pathways, involving Bcl-2 family and Caspase-3 protein. These three cellular pathways are interrelated and affected each other. Moreover, 22 NPs could be passively targeted to accumulate in the liver through the retention effect and are more easily absorbed than 22.HCl salt in the liver.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Curcumina , Fallo Hepático Agudo , Nanopartículas , Albúminas/química , Albúminas/metabolismo , Animales , Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Curcumina/análogos & derivados , Curcumina/farmacología , Curcumina/uso terapéutico , Galactosamina/efectos adversos , Lipopolisacáridos/efectos adversos , Hígado/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/tratamiento farmacológico , Fallo Hepático Agudo/metabolismo , Ratones , FN-kappa B/metabolismo , Nanopartículas/uso terapéutico
10.
Pain Ther ; 11(2): 561-574, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35220550

RESUMEN

INTRODUCTION: Migraine is a common headache disorder. Many studies have used magnetic resonance imaging (MRI) to explore the possible pathogenesis of migraine, but they have not reached consistent conclusions and lack rigorous multiple comparison correction. Thus, this study investigates the mechanisms of migraine development from the perspective of altered functional connectivity (FC) in brain regions by using data-driven and regions of interest (ROI)-based approaches. METHODS: Resting-state functional MRI data were collected from 30 patients with migraine and 40 healthy controls (HCs) matched for age, gender, and years of education. For the data-driven method, we used a voxel-mirrored homotopic connectivity (VMHC) approach to compare the FC between the patients and HCs. For the ROI-based method, significant differences in VMHC maps between the patients and HCs were defined as ROI. The seed-based approach further revealed significant differences in FC between the seeds and the other brain regions. Furthermore, the correlations between abnormal FC and clinical characteristics of patients were investigated. A rigorous multiple comparison correction was used with false discovery rate and permutation test (5000 times). RESULTS: In comparison with the controls group, patients showed enhanced VMHC in the bilateral thalamus. We also observed enhanced FC between the left thalamus and the left superior frontal gyrus, and increased FC between the right thalamus and the left middle frontal gyrus (Brodmann area 45 and Brodmann area 8) in patients. Further analysis showed that the FC values in the left superior frontal gyrus and left middle frontal gyrus were negatively corrected with visual analogue scale scores or attack times for headaches. CONCLUSIONS: Patients with migraine showed altered VMHC in the bilateral thalamus, and abnormal FC of bilateral thalamus and other brain regions. The abnormalities in thalamic FC are a likely mechanism for the development of migraine. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2000033995. Registered on 20 June 2020.

11.
Chem Biodivers ; 19(2): e202100809, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34931450

RESUMEN

This work deals with the design and synthesis of 18 barbituric acid derivatives bearing 1,3-dimethylbarbituric acid and cinnamic acid scaffolds to find potent anticancer agents. The target molecules were obtained through Knoevenagel condensation and acylation reaction. The cytotoxicity was assessed by the MTT assay. Flowcytometry was performed to determine the cell cycle arrest, apoptosis, ROS levels and the loss of MMP. The ratios of GSH/GSSG and the MDA levels were determined by using UV spectrophotometry. The results revealed that introducing substitutions (CF3 , OCF3 , F) on the meta- of the benzyl ring of barbituric acid derivatives led to a considerable increase in the antiproliferative activities compared with that of corresponding ortho- and para-substituted barbituric acid derivatives. Mechanism investigation implied that the 1c could increase the ROS and MDA level, decrease the ratio of GSH/GSSG and MMP, and lead to cell cycle arrest. Further research is needed for structural optimization to enhance hydrophilicity, thereby improve the biological activity of these compounds.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Antineoplásicos/química , Apoptosis , Barbitúricos , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
12.
Bioorg Chem ; 117: 105465, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34775205

RESUMEN

Piperlongumine (PL) has been showed to have multiple pharmacological activities. In this study, we reported the synthesis of three series of PL derivatives, and evaluation of their anti-inflammatory effects in both lipopolysaccharide (LPS)-induced Raw264.7 macrophages and a dextran sulfate sodium (DSS)-induced mouse model of colitis. Our results presented that two meta-substituent containing derivatives 1-3 and 1-6, in which γ-butyrolactam replaced α,ß-unsaturated δ-valerolactam ring of PL, displayed low cytotoxicity and effective anti-inflammatory activity. Molecular docking also showed that the meta-substituted derivative, compared with the corresponding ortho- or para-substituted derivative, had significant interactions with the amino acid residues of CD14, which was the core receptors recognizing LPS. In vitro and in vivo studies, 1-3 and 1-6 could inhibit the expression of pro-inflammatory cytokines, and the excessive production of reactive nitrogen species and reactive oxygen species. Oral administration of 100 mg/kg/day of 1-3 or 1-6 alleviated the severity of clinical symptoms of colitis in mice, and significantly reduced the colonic tissue damage to protect the colonic tissue from the DSS-induced colitis. These results suggested that meta-substituted derivatives 1-3 and 1-6 were potential anti-inflammatory agents, which may lead to future pharmaceutical development.


Asunto(s)
Colitis/tratamiento farmacológico , Dioxolanos/farmacología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran , Dioxolanos/síntesis química , Dioxolanos/química , Relación Dosis-Respuesta a Droga , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Relación Estructura-Actividad
13.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071298

RESUMEN

Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that the strong electrophilicity group at the C2-C3 double bond of PL analogs plays an important role in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring, partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno, such as TrxR, could be irreversibly inhibited by the C2-C3 double bond of PL analogs, and boost intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro cancer apoptosis through the inhibition of TrxR and ROS accumulation.


Asunto(s)
Apoptosis , Dioxolanos/química , Especies Reactivas de Oxígeno , Células A549 , Antineoplásicos/farmacología , Ciclo Celular , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Cloro/química , Electrones , Humanos , Peroxidación de Lípido , Potencial de la Membrana Mitocondrial , Oxidación-Reducción , Sales de Tetrazolio/química , Tiazoles/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo
14.
Eur J Pharm Sci ; 160: 105756, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33588045

RESUMEN

Curcumin was reported as an anti-inflammatory agent. However, curcumin's poor bioavailability limited its clinical utility. Here, thirty ortho-substituted mono-carbonyl curcumin derivatives, containing acetone, cyclopentanone, cyclohexanone or 4-piperidione (NH, N-methyl or N-acrylyl) moieties replacing ß-diketone moiety of curcumin, were investigated for anti-inflammatory activity. Two active ortho-trifluoromethoxy-substituted 4-piperidione-containing derivatives 22 and 24 owned good cell uptake ability, and displayed excellent anti-inflammatory activity in both lipopolysaccharide-induced Raw264.7 macrophages and a dextran sulfate sodium (DSS)-induced mouse model of colitis. They inhibited the production of nitric oxide, reactive oxygen species, malonic dialdehyde and cyclooxygenase-2; and the expression of pro-inflammatory cytokines interleukin-1ß, tumor necrosis factor-α and myeloperoxidase; the phosphorylation of mitogen-activated protein kinases; and the nucleus translocation of p65. What's more, 22 or 24 oral administered reduced the severity of clinical symptoms of ulcerative colitis (body weight and disease activity index), and reduced obviously DSS-induced colonic pathological damage (the colon length and histopathology analysis). These results suggested that ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives 22 and 24 were potential anti-inflammatory agents; and offered the important information for design and discovery of more potent anti-inflammatory drug candidates.


Asunto(s)
Colitis , Curcumina , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Colon , Curcumina/farmacología , Curcumina/uso terapéutico , Sulfato de Dextran , Modelos Animales de Enfermedad , Lipopolisacáridos , Ratones
15.
Bioorg Chem ; 104: 104273, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956875

RESUMEN

ß-ionone, a cyclic terpenoid compound present in many fruits, has been showed a broad spectrum of biological activities. In this paper, we synthesized a panel of ß-ionone derivatives and tested their anti-proliferation activity on cancer cell by the MTT assay. The results showed that most of the ß-ionone derivatives were more active than ß-ionone and curcumin. Particularly, the ß-ionone derivatives (1a, 1d and 1g) with ortho-substituents on the aromatic ring exhibited much stronger cytotoxicity than their corresponding meta- and para-substituted compounds. Importantly, the cytotoxicity of the ß-ionone derivatives (1a, 1d and 1g) were relationship with their reactive oxygen species (ROS)-generation abilities, which could lead to the redox imbalance, lipid peroxidation, the loss of mitochondrial membrane potential (MMP), the activation of Bax and Caspase 3, followed by cell apoptosis. This work suggest that the "ortho effect", the ROS-generation ability and drawing fluorine atom into drugs may play a potent role in enhancing the anticancer activity of ß-ionone derivatives.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Norisoprenoides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Norisoprenoides/síntesis química , Norisoprenoides/química , Relación Estructura-Actividad
16.
Eur J Pharmacol ; 888: 173396, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32798508

RESUMEN

Bischalcone has gained much attention because of its wide range of application in pharmaceutical chemistry. This work aims to evaluate the antiproliferation effects and explore the anticancer mechanism of bischalcone analogs on human lung cancer A549 cells. In this study, we synthesized a series of bischalcone analogs via Aldol condensation reaction; MTT method was used to evaluate the antiproliferation effects; the 2',7'-dichlorofluorescein fluorescence assay was used to determine the intracellular reactive oxygen species levels; the glutathione reductase-DTNB recycling assay was used to detect the redox imbalance; determination of thiobarbituric acid-reactive substance was used to evaluate the lipid peroxidation; Rhodamine 123 was used to test the mitochondrial membrane potential (MMP); the FITC/PI kit was used to detect the apoptosis; Western blotting was used to detect the expression of Bax and Caspase 3. After treatment with curcumin and bischalcone analogs, compounds 1d and 1g, the more stabilities compounds than curcumin, exhibited much higher potency in A549 cells than curcumin and other bischalcone analogs. Further mechanism of action studies revealed that 1d and 1g exhibited more stronger reactive oxygen species production abilities than curcumin and accompanied by the redox imbalance, lipid peroxidation, the loss of MMP, the activition of Bax and Caspase 3, and ultimately resulted in apoptosis of A549 cell. These data suggest that enhancing the reactive oxygen species generation ability of bischalcone analogs may be a promising strategy for the treatment of human lung cancer.


Asunto(s)
Antineoplásicos/síntesis química , Chalcona/análogos & derivados , Chalcona/síntesis química , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Chalcona/farmacología , Chalcona/uso terapéutico , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
17.
RSC Adv ; 10(69): 42128-42136, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516728

RESUMEN

Piperlongumine (PL), a potent anticancer agent from the plant long pepper (Piper longum), contains the 5,6-dihydropyridin-2(1H)-one heterocyclic scaffold and cinnamoyl unit. In this paper, we synthesized a series of PL analogs and evaluated their cytotoxicity against cancer cells for the sake of exploring which pharmacophore plays a more potent role in enhancing the anticancer activities of PL. These results illustrated that the position effect, not the electronic effect, of substituents plays a certain role in the cytotoxicity of PL and its analogs. More important, the 5,6-dihydropyridin-2(1H)-one unit, a potent pharmacophore in enhancing the antiproliferative activities of PL, could react with cysteamine and lead to ROS generation, and then bring about the occurrence of ROS-induced downstream events, followed by cell cycle arrest and apoptosis. This work suggests that introducing a lactam unit containing Michael acceptors may be a potent strategy to enhancing the anticancer activity of drugs.

18.
Eur J Pharmacol ; 786: 161-168, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27266668

RESUMEN

In this paper, we synthesized three fluorine-substituted mono-carbonyl curcumin analogs and evaluated their cytotoxicity against several cancer cells by the MTT assay. The results exhibited that all the three compounds were more active than the leading curcumin. Especially, 2,2'-F mono-carbonyl curcumin, 1a, surfaced as an important lead compound displaying almost 4-fold cytotoxicity relative to curcumin. More importantly, 1a was more stable in (RPMI)-1640 medium and more massive uptake than curcumin, which may be relationship to their cytotoxicity, apoptotic acitivity and reactive oxygen species generation. And then, the generation of reactive oxygen species can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 2,2'-F mono-carbonyl curcumin (1a) may cause cancer cells apoptosis through reactive oxygen species-Mediated pathway, but also gives us an important information for design of mono-carbonyl curcumin analog.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Transporte Biológico , Línea Celular Tumoral , Curcumina/química , Curcumina/metabolismo , Diarilheptanoides , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Relación Estructura-Actividad
19.
Eur J Med Chem ; 112: 157-163, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26894841

RESUMEN

In this paper, we synthesized a series of curcumin analogs and evaluated their cytotoxicity against HepG2 cells. The results exhibited that the hydroxyl group at 3,3'-position play an essential role in enhancing their anti-proliferation activity. More importantly, 3,3'-hydroxy curcumin (1b) caused apoptosis in HepG2 cells with the ROS generation, which may be mainly composed of hydroxyl radicals (HO) and H2O2. The more cytotoxic activity and ROS-generating ability of 1b may be due to the more stable in (RPMI)-1640 medium and more massive uptake than curcumin. Then the generation of ROS can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 3,3'-hydroxy curcumin (1b) may cause HepG2 cells apoptosis through ROS-mediated pathway, but also offer an important information for design of curcumin analog.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Humanos , Radical Hidroxilo/química , Radical Hidroxilo/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
20.
Free Radic Biol Med ; 85: 127-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25912482

RESUMEN

Developing anticancer agents by a prooxidant strategy has attracted increasing attention in recent years, although it is not conventional in medicinal chemistry and is completely opposite to antioxidant therapy. In this work, a panel of diarylpentanoids as the curcumin mono-carbonyl analogs were designed and synthesized, and their cytotoxic and proapoptotic mechanisms against human lung cancer A549 cells were investigated at the frontiers of chemistry and biology. It was found that compared with curcumin, the compounds (A1, B1, and C1) bearing two ortho substituents on the aromatic rings, especially A1, exhibit significantly increased cytotoxic and proapoptotic activities through a Michael acceptor unit-dependent prooxidant-mediated mechanism. The prooxidative ability is governed not only by their electrophilicity but also by their geometry, cellular uptake and metabolic stability, and TrxR-inhibitory activity. Mechanistic investigation reveals that the compound A1 could effectively and irreversibly modify the TrxR by virtue of the above optimal biochemical parameters, and convert this antioxidant enzyme into a reactive oxygen species (ROS) promoter, resulting in a burst of the intracellular ROS including H2O2 and O2(-)•. The ROS generation is associated with falling apart in the redox buffering system, and subsequently induces increases in Ca(2+) influx and oxidative stress, collapse of mitochondrial membrane potential, and activation of caspase-9 and caspase-3, ultimately leading to cell apoptosis. This work highlights the feasibility in designing curcumin-inspired anticancer agents by a prooxidant strategy, and gives us useful information on how to design them.


Asunto(s)
Antineoplásicos/química , Curcumina/química , Especies Reactivas de Oxígeno/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Curcumina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ácidos Pentanoicos/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA