Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 715
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957117

RESUMEN

An inverse sandwich structure has been computationally predicted for uranium boride and extended to the series of actinide elements (An) from Th to Cm. The electronic structure and chemical bonding of these novel compounds have been analyzed using density functional theory and multireference wave-function based methods. We report the trends in electronic structure and bonding for An2B8, and found that (d-π)π and (d-p)δ are the most important factors in the stability of An2B8. The (f-p)δ bond provides extra stabilization for Pa2B8 and U2B8, owing to the extensive interactions of An-B8-An, resulting in a short distance for the Pa-Pa and U-U bonds.

2.
Heliyon ; 10(12): e32093, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38948047

RESUMEN

Chinese agricultural named entity recognition (NER) has been studied with supervised learning for many years. However, considering the scarcity of public datasets in the agricultural domain, exploring this task in the few-shot scenario is more practical for real-world demands. In this paper, we propose a novel model named GlyReShot, integrating the knowledge of Chinese character glyph into few-shot NER models. Although the utilization of glyph has been proven successful in supervised models, two challenges still persist in the few-shot setting, i.e., how to obtain glyph representations and when to integrate them into the few-shot model. GlyReShot handles the two challenges by introducing a lightweight glyph representation obtaining module and a training-free label refinement strategy. Specifically, the glyph representations are generated based on the descriptive sentences by filling the predefined template. As most steps come before training, this module aligns well with the few-shot setting. Furthermore, by computing the confidence values for draft predictions, the refinement strategy selectively utilizes the glyph information only when the confidence values are relatively low, thus mitigating the influence of noise. Finally, we annotate a new agricultural NER dataset and the experimental results demonstrate effectiveness of GlyReShot for few-shot Chinese agricultural NER.

3.
Front Genet ; 15: 1401544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948360

RESUMEN

Introduction: Synergistic medication, a crucial therapeutic strategy in cancer treatment, involves combining multiple drugs to enhance therapeutic effectiveness and mitigate side effects. Current research predominantly employs deep learning models for extracting features from cell line and cancer drug structure data. However, these methods often overlook the intricate nonlinear relationships within the data, neglecting the distribution characteristics and weighted probability densities of gene expression data in multi-dimensional space. It also fails to fully exploit the structural information of cancer drugs and the potential interactions between drug molecules. Methods: To overcome these challenges, we introduce an innovative end-to-end learning model specifically tailored for cancer drugs, named Dual Kernel Density and Positional Encoding (DKPE) for Graph Synergy Representation Network (DKPEGraphSYN). This model is engineered to refine the prediction of drug combination synergy effects in cancer. DKPE-GraphSYN utilizes Dual Kernel Density Estimation and Positional Encoding techniques to effectively capture the weighted probability density and spatial distribution information of gene expression, while exploring the interactions and potential relationships between cancer drug molecules via a graph neural network. Results: Experimental results show that our prediction model achieves significant performance enhancements in forecasting drug synergy effects on a comprehensive cancer drug and cell line synergy dataset, achieving an AUPR of 0.969 and an AUC of 0.976. Discussion: These results confirm our model's superior accuracy in predicting cancer drug combinations, providing a supportive method for clinical medication strategy in cancer.

4.
ACS Nano ; 18(24): 15332-15357, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38837178

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.


Asunto(s)
Miocitos Cardíacos , Humanos , Fenómenos Electrofisiológicos , Animales
6.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822863

RESUMEN

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Asunto(s)
Cadmio , Microplásticos , Plantones , Superóxido Dismutasa , Vicia faba , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cadmio/toxicidad , Microplásticos/toxicidad , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Contaminantes Químicos del Agua/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
7.
J Environ Manage ; 363: 121390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852410

RESUMEN

Vertical-slot fishway (VSF) has been used in many water conservancy projects to restore the river connectivity. A high-quality fishway project should facilitate fish to discovering the exit and passing through, avoiding to long stay in the fishway and delay the migration. Current research on fishway engineering has not yielded an expected passing ratio of fish migration, and it is therefore of great significance to further study the assisting effect of VSF in fish migration. To begin with, we preliminarily determined the attractive and repelling colors of grass carps based on their swimming behavior in a static water pool configured with local colors. Combined with the migration route of the grass carp in a VSF pool without local coloring, four local coloring cases were designed. Based on the camera results of the four experimental local coloring cases, a comparative analysis was conducted with the blank control group frame by frame. This was followed by the statistics of the number of successfully migrated grass carps and their total completion time. On that basis, the assisting effect of VSF in fish migration under the four cases was evaluated in terms of the reduction rate of migration route length, the reduction rate of completion time, and the improvement rate of passing ratio. The research outcomes indicated that green and blue act as attractive colors while yellow and red serve as repelling colors for grass carp. Adding colors to the training wall and dividing wall in the VSF pool, the migration route of grass carp was appropriately adjusted, alongside a shortened completion time and an improved passing ratio. Of the four local coloring cases, the recommended case showed a significant effect on migration route, with more concentrated moving trajectories and shortened route length. Typically, the migration route length decreased by 26%, and the frequency of fish long staying at the junction between the training wall and dividing wall was markedly reduced, as well as the frequency of fish swimming along the water flow from upstream to downstream. The completion time was shortened by 26%, and the passing ratio was enhanced by 44%. The approach of combining local coloring with fish behavior and fishway hydraulics in the pool surpassed the method that optimizes the fishway design only from the fishway hydraulics. The improved method greatly shortened the migration route length, reduced the completion time, and significantly improved the passing ratio of fish passage objects in the VSF. The present research mainly focuses on using model experiments to evaluate the local coloring cases. In the future studies, we will configure local colors to the sidewalls of on-site fishways using environmentally friendly paint or colored organic glass panels. With the monitoring results of the completion time and passing ratio of fish passage objects, the recommended case can be further verified and optimized, thereby providing a more reasonable and feasible local coloring case for assisting fish migration in the VSF project.


Asunto(s)
Migración Animal , Carpas , Animales , Natación , Color , Ríos , Conservación de los Recursos Naturales
8.
Macromol Rapid Commun ; : e2400275, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830087

RESUMEN

The advent of nonfullerene acceptors (NFAs) has greatly improved the photovoltaic performance of organic solar cells (OSCs). However, to compete with other solar cell technologies, there is a pressing need for accelerated research and development of improved NFAs as well as their compatible wide bandgap polymer donors. In this study, a novel electron-withdrawing building block, succinimide-substituted thiophene (TS), is utilized for the first time to synthesize three wide bandgap polymer donors: PBDT-TS-C5, PBDT-TSBT-C12, and PBDTF-TSBT-C16. These polymers exhibit complementary bandgaps for efficient sunlight harvesting and suitable frontier energy levels for exciton dissociation when paired with the extensively studied NFA, Y6. Among these donors, PBDTF-TSBT-C16 demonstrates the highest hole mobility and a relatively low highest occupied molecular orbital (HOMO) energy level, attributed to the incorporation of thiophene spacers and electron-withdrawing fluorine substituents. OSC devices based on the blend of PBDTF-TSBT-C16:Y6 achieve the highest power conversion efficiency of 13.21%, with a short circuit current density (Jsc) of 26.83 mA cm-2, an open circuit voltage (Voc) of 0.80 V, and a fill factor of 0.62. Notably, the Voc × Jsc product reaches 21.46 mW cm-2, demonstrating the potential of TS as an electron acceptor building block for the development of high-performance wide bandgap polymer donors in OSCs.

9.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840053

RESUMEN

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Asunto(s)
Germinación , Lens (Planta) , Semillas , Temperatura , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Lens (Planta)/fisiología , Lens (Planta)/crecimiento & desarrollo , Agua/metabolismo , Modelos Biológicos , Presión Osmótica
10.
J Cell Mol Med ; 28(12): e18373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894657

RESUMEN

Gastric cancer (GC) remains a prominent malignancy that poses a significant threat to human well-being worldwide. Despite advancements in chemotherapy and immunotherapy, which have effectively augmented patient survival rates, the mortality rate associated with GC remains distressingly high. This can be attributed to the elevated proliferation and invasive nature exhibited by GC. Our current understanding of the drivers behind GC cell proliferation remains limited. Hence, in order to reveal the molecular biological mechanism behind the swift advancement of GC, we employed single-cell RNA-sequencing (scRNA-seq) to characterize the tumour microenvironment in this study. The scRNA-seq data of 27 patients were acquired from the Gene Expression Omnibus database. Differential gene analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were employed to investigate 38 samples. The copy number variation level exhibited by GC cells was determined using InferCNV. The CytoTRACE, Monocle and Slingshot analysis were used to discern the cellular stemness and developmental trajectory of GC cells. The CellChat package was utilized for the analysis of intercellular communication crosstalk. Moreover, the findings of the data analysis were validated through cellular functional tests conducted on the AGS cell line and SGC-7901 cell line. Finally, this study constructed a risk scoring model to evaluate the differences of different risk scores in clinical characteristics, immune infiltration, immune checkpoints, functional enrichment, tumour mutation burden and drug sensitivity. Within the microenvironment of GC, we identified the presence of 8 cell subsets, encompassing NK_T cells, B_Plasma cells, epithelial cells, myeloid cells, endothelial cells, mast cells, fibroblasts, pericytes. By delving deeper into the characterization of GC cells, we identified 6 specific tumour cell subtypes: C0 PSCA+ tumour cells, C1 CLDN7+ tumour cells, C2 UBE2C+ tumour cells, C3 MUC6+ tumour cells, C4 CHGA+ tumour cells and C5 MUC2+ tumour cells. Notably, the C2 UBE2C+ tumour cells demonstrated a close association with cell mitosis and the cell cycle, exhibiting robust proliferative capabilities. Our findings were fortified through enrichment analysis, pseudotime analysis and cell communication analysis. Meanwhile, knockdown of the transcription factor CREB3, which is highly active in UBE2C+ tumour cells, significantly impedes the proliferation, migration and invasion of GC cells. And the prognostic score model constructed with CREB3-related genes showcased commendable clinical predictive capacity, thus providing valuable guidance for patients' prognosis and clinical treatment decisions. We have identified a highly proliferative cellular subgroup C2 UBE2C+ tumour cells in GC for the first time. The employment of a risk score model, which is based on genes associated with UBE2C expression, exhibits remarkable proficiency in predicting the prognosis of GC patients. In our investigation, we observed that the knockdown of the transcription factor CREB3 led to a marked reduction in cellular proliferation, migration and invasion in GC cell line models. Implementing a stratified treatment approach guided by this model represents a judicious and promising methodology.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/genética , Proliferación Celular/genética , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Variaciones en el Número de Copia de ADN/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Comunicación Celular/genética
11.
J Chem Phys ; 160(24)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38912629

RESUMEN

Gap opening remains elusive in copper chalcogenides (Cu2X, X = S, Se, and Te), not least because Hubbard + U, hybrid functional, and GW methods have also failed. In this work, we elucidate that their failure originates from a severe underestimation of the 4s-3d orbital splitting of the Cu atom, which leads to a band-order inversion in the presence of an anionic crystal field. As a result, the Fermi energy is pinned due to symmetry, yielding an invariant zero gap. Utilizing the hybrid pseudopotentials to correct the underestimation on the atomic side opens up gaps of experimental magnitude in Cu2X, suggesting their predominantly electronic nature. Our work not only clarifies the debate about the Cu2X gap but also provides a way to identify which of the different methods really captures the physical essence and which is the result of error cancellation.

12.
Huan Jing Ke Xue ; 45(6): 3649-3660, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897784

RESUMEN

This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.


Asunto(s)
Antioxidantes , Cadmio , Quitosano , Plantones , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Quitosano/metabolismo , Quitosano/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Antioxidantes/metabolismo , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
13.
ACS Biomater Sci Eng ; 10(6): 3958-3967, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38711418

RESUMEN

Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device. Importantly, the cell-laden microgels can be rapidly prepared in a pump-free manner under an all-aqueous environment. The three-dimensional cultured green fluorescent protein-human A549 cells in alginate microgels exhibited enhanced stemness and drug resistance compared to those under two-dimensional conditions. The pancreatic cancer organoids in alginate microgels exhibited some of the key features of pancreatic cancer. The proposed microgels showed decent monodispersity, biocompatibility, and versatility, providing great opportunities in various biomedical applications such as microcarrier fabricating, organoid engineering, and high-throughput drug screening.


Asunto(s)
Alginatos , Microgeles , Alginatos/química , Alginatos/farmacología , Humanos , Microgeles/química , Células A549 , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
14.
Langmuir ; 40(22): 11817-11827, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38760325

RESUMEN

Improving the dispersibility and compatibility of nanomaterials in water-borne epoxy resins is an important means to improve the protection ability and corrosion resistance of coatings. In this study, glycine-functionalized Ti3C2Tx (GT) was used to prepare an epoxy composite coating. The results of Fourier transform infrared spectroscopy and X-ray diffraction showed that glycine was successfully modified. The scanning electron microscopy and transmission electron microscopy results showed that the aggregation of Ti3C2Tx was alleviated. Electrochemical impedance spectroscopy test results show that, after 60 days of immersion, GT coating still shows the best protection performance, and the composite coating |Z|f = 0.01 Hz is 3 orders of magnitude higher than that of the pure epoxy coating. This is mainly because, after adding glycine, the -COOH group on the surface of glycine binds to the -OH group on the surface of Ti3C2Tx, improving the aggregation of Ti3C2Tx itself. At the same time, the -NH group of glycine can also participate in the curing reaction of epoxy resin to strengthen the bonding strength between the coating and the metal. The good dispersion of GT in epoxy resin makes it fill the pores and holes left by epoxy resin curing and strengthen the corrosion resistance. The easy availability and green properties of glycine provide a simple and environmentally friendly method for the modification of Ti3C2Tx.

15.
Adv Mater ; : e2403820, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720475

RESUMEN

Graphene's wetting transparency offers promising avenues for creating multifunctional devices by allowing real-time wettability control on liquid substrates via the flow of different liquids beneath graphene. Despite its potential, direct measurement of floating graphene's wettability remains a challenge, hindering the exploration of these applications. The current study develops an experimental methodology to assess the wetting transparency of single-layer graphene (SLG) on liquid substrates. By employing contact angle measurements and Neumann's Triangle model, the challenge of evaluating the wettability of floating free-suspended single-layer graphene is addressed. The research reveals that for successful contact angle measurements, the testing and substrate liquids must be immiscible. Using diiodomethane as the testing liquid and ammonium persulfate solution as liquid substrate, the study demonstrates the near-complete wetting transparency of graphene. Furthermore, it successfully showcases the feasibility of real-time wettability control using graphene on liquid substrates. This work not only advances the understanding of graphene's interaction with liquid interfaces but also suggests a new avenue for the development of multifunctional materials and devices by exploiting the unique wetting transparency of graphene.

16.
Food Chem X ; 22: 101418, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38736980

RESUMEN

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

17.
iScience ; 27(5): 109732, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706862

RESUMEN

In Drosophila, long noncoding RNA Hsrω rapidly assembles membraneless organelle omega speckles under heat shock with unknown biological function. Here, we identified the distribution of omega speckles in multiple tissues of adult Drosophila melanogaster and found that they were selectively distributed in differentiated enterocytes but not in the intestinal stem cells of the midgut. We mimicked the high expression level of Hsrω via overexpression or intense heat shock and demonstrated that the assembly of omega speckles nucleates TBPH for the induction of ISC differentiation. Additionally, we found that heat shock stress promoted cell differentiation, which is conserved in mammalian cells through paraspeckles, resulting in large puncta of TDP-43 (a homolog of TBPH) with less mobility and the differentiation of human induced pluripotent stem cells. Overall, our findings confirm the role of Hsrω and omega speckles in the development of intestinal cells and provide new prospects for the establishment of stem cell differentiation strategies.

18.
J Inflamm Res ; 17: 3187-3200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779429

RESUMEN

Background: Natural killer (NK) cells are key regulators of immune defense in sepsis-induced acute respiratory distress syndrome (ARDS), yet the characteristics of NK cell clusters in ARDS remain poorly understood. Methods: A prospective and observational study enrolled septic patients with ARDS or not was conducted to determine the percentage of NK cells via flow cytometry. The transcriptomes of peripheral blood mononuclear cells (PBMCs) from healthy controls, patients with sepsis only, and patients with sepsis-induced ARDS were profiled. Vitro experiments were performed to confirm the mechanism mediating MX1+NK cell infiltration. Results: A total of 115 septic patients were analyzed, among whom 63 patients developed ARDS and 52 patients did not. Decreased NK percentages were found in sepsis with ARDS patients (%, 7.46±4.40 vs 11.65±6.88, P=0.0001) compared with sepsis-only patients. A lower percentage of NK cells showed a significant increase in 28-day mortality. Single-cell sequencing analysis revealed distinct characteristics of NK cells in sepsis-induced ARDS, notably the identification of a unique cluster defined as MX1+NK cells. Flow cytometry analysis showed an elevated percentage of MX1+NK cells specifically in individuals with sepsis-induced ARDS, compared with patients with sepsis only. Pseudo-time analysis showed that MX1+NK cells were characterized by upregulation of type I interferon-induced genes and other pro-inflammatory genes. MX1+NK cells can respond to type I interferons and secrete type I interferons themselves. Ligand-receptor interaction analysis also revealed extensive interaction between MX1+NK cells and T/B cells, leading to an uncontrolled inflammatory response in ARDS. Conclusion: MX1+NK cells can respond to type I interferons and secrete type I interferons themselves, promoting the development of sepsis-induced ARDS. Interfering with the infiltration of MX1+NK cells could be a therapeutic approach for this disease. Due to the limited sample size, a larger sample size was needed for further exploration.

19.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816803

RESUMEN

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Asunto(s)
Germinación , Ácido Salicílico , Tocoferoles , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/efectos de los fármacos , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Tocoferoles/metabolismo , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Antioxidantes/metabolismo , Estrés Fisiológico , Desarrollo Sostenible , Clorofila/metabolismo
20.
J Inflamm Res ; 17: 3159-3171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774448

RESUMEN

Background: Sepsis is a life-threatening clinical syndrome caused by dysregulated host response to infection. The mechanism underlying sepsis-induced immune dysfunction remains poorly understood. Natural killer T (NKT) cells are cytotoxic lymphocytes that bridge the innate and adaptive immune systems, the role of NKT cells in sepsis is not entirely understood, and NKT cell cluster differences in sepsis remain unexplored. Methods: Mendelian randomization (MR) analyses were first conducted to investigate the causal relationship between side scatter area (SSC-A) on NKT cells and 28-day mortality of septic patients. A prospective and observational study was conducted to validate the relationship between the percentage of NKT cells and 28-day mortality of sepsis. Then, the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from healthy controls and septic patients were profiled. Results: MR analyses first revealed the protective roles of NKT cells in the 28-day mortality of sepsis. Then, 115 septic patients were enrolled. NKT percentage was significantly higher in survivors (n = 84) compared to non-survivors (n = 31) (%, 5.00 ± 3.46 vs 2.18 ± 1.93, P < 0.0001). Patients with lower levels of NKT cells exhibited a significantly increased risk of 28-day mortality. According to scRNA-seq analysis, NKT cell clusters exhibited multiple distinctive characteristics, including a distinguishing cluster defined as FOS+NKT cells, which showed a significant decrease in sepsis. Pseudo-time analysis showed that FOS+NKT cells were characterized by upregulated expression of crucial functional genes such as GZMA and CCL4. CellChat revealed that interactions between FOS+NKT cells and adaptive immune cells including B cells and T cells were decreased in sepsis compared to healthy controls. Conclusion: Our findings indicate that NKT cells may protect against sepsis, and their percentage can predict 28-day mortality. Additionally, we discovered a unique FOS+NKT subtype crucial in sepsis immune response, offering novel insights into its immunopathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA