RESUMEN
Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.
Asunto(s)
Citocinas , Proteínas del Citoesqueleto , Dermatitis Atópica , Ratones Endogámicos BALB C , Dinámicas Mitocondriales , Triterpenos Pentacíclicos , Triterpenos , Animales , Dinámicas Mitocondriales/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Dermatitis Atópica/metabolismo , Humanos , Triterpenos/farmacología , Ratones , Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Linfopoyetina del Estroma Tímico , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células HaCaT , Fosforilación/efectos de los fármacosRESUMEN
The skin acts as the body's primary physical and immune barrier, maintaining the skin microbiome and providing a physical, chemical, and immune barrier. A disrupted skin barrier plays a critical role in the onset and advancement of inflammatory skin conditions such as atopic dermatitis (AD) and contact dermatitis. This narrative review outlines the relationship between AD and skin barrier function in preparation for the search for possible markers for the treatment of AD.
RESUMEN
We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-ß1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1ß, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-ß1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.
RESUMEN
BACKGROUND: Keloid is a benign proliferative fibrous disease featured by excessive fibroblast proliferation after skin injury. However, the mechanism of abnormal cell proliferation is still unclear. Herein, we investigated the mechanism of abnormal proliferation in keloids involving Sirtuin 1(SIRT1)/ Zeste Homolog 2 (EZH2)/ Runt-related transcription factor 3 (RUNX3). METHODS: HE staining was used to observe the histopathological changes. Western blot was performed to detect SIRT1/EZH2/RUNX3 and cell cycle related proteins. RT-PCR detected EZH2 mRNA. After knockdown of EZH2 or overexpression of RUNX3, cell proliferation and cell cycle was analyzed. Immunoprecipitation was used to detect acetylated EZH2. RESULTS: The results showed that overexpression of RUNX3 inhibited cell proliferation and arrested cell cycle at G1/S phase, whereas inhibition of SIRT1 promoted cell proliferation and G1/S phase of the cell cycle. Knockdown of EZH2 promoted the expression of RUNX3, inhibited cell proliferation and shortened the progression of G1 to S phase. Simultaneous knockdown of EZH2 and inhibition of SIRT1 reversed these effects. Inhibition of SIRT1 increased its protein stability by increasing EZH2 acetylation, thereby reducing the expression of RUNX3 and promoting cell proliferation. CONCLUSIONS: Conclusively, the SIRT1/EZH2/RUNX3 axis may be an important pathway in the regulation of abnormal proliferation in keloids.
Asunto(s)
Fibroblastos , Proliferación CelularRESUMEN
We investigated the regulatory role of miR-181b-5p in neutrophilic asthma and its mechanisms by targeting DEK. DEK, matrix metalloproteinase (MMP)-2, and MMP-9 were overexpressed and the miR-181b-5p was decreased in mice with neutrophilic asthma. DEK was a direct target of miR-181b-5p. In mouse model, miR-181b-5p agomir had an inhibitory effect on airway inflammation and remodeling. miR-181b-5p inhibited DEK/p-GSK-3ßSer9/ß-catenin/MMP-9 pathway activation by regulating Wnt ligands in BEAS-2B and 16HBE cells. The ability of supernatants from human bronchial epithelial cells (hBECs) co-stimulated with CXCL8 (IL-8) and miR-181b-5p to induce NETs was weaker than that of IL-8 alone. Moreover, DEK overexpression led to excessive mitochondrial dysfunction, including DRP1 up-regulation, p-DRP1ser637 and MFN2 down-regulation, mitochondrial membrane potential loss, excessive mtROS generation and mitochondrial incompleteness. Interestingly, all these phenotypes were rescued by Wnt inhibitor DKK-1 and miR-181b-5p agomir. Additionally, inhibition of DRP1 with Mdivi-1 decreased MMP-9 on BEAS-2B cells. Overall, miR-181b-5p could attenuate neutrophilic asthma through inhibition of NETs release, DEK/p-GSK-3ßSer9/ß-catenin/MMP-9 pathway, DEK/Wnt/DRP1/MMP-9 and mitochondria damage. It may become a new therapeutic target for neutrophilic asthma.
Asunto(s)
Asma , MicroARNs , Proteínas de Unión a Poli-ADP-Ribosa , Animales , Humanos , Ratones , Asma/metabolismo , beta Catenina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Interleucina-8/metabolismo , Ligandos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
Bronchial asthma is characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. MicroRNA (miRNA) has recently been implicated in the pathogenesis of asthma. However, the mechanisms of different miRNAs in asthma are complicated, and the mechanism of miRNA-182-5p in asthma is still unclear. Here, we aim to explore the mechanism of miRNA182-5p in asthma-related airway inflammation. Ovalbumin (OVA)-induced asthma model was established. MiRNA Microarray Analysis was performed to analyze the differentially expressed miRNAs in the asthma model. We found that the expression of miRNA-182-5p was significantly decreased in OVA-induced asthma. In vitro, IL-13 stimulation of BEAS-2B cells resulted in a significant up-regulation of NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4), accompanied by mitochondrial damage-induced apoptosis, NLRP3 (NOD-like receptor family pyrin domain-containing 3)/IL-1ß activation, and reduced miRNA-182-5p. In contrast, overexpression of miRNA-182-5p significantly inhibited epithelial cell apoptosis and NLRP3/IL-1ß activation. In addition, we found that miRNA-182-5p could bind to the 3' untranscripted region of NOX4 mRNA and inhibit epithelial cell inflammation by reducing oxidative stress and mitochondrial damage. In vivo, miRNA-182-5p agomir treatment significantly reduced the percentage of eosinophils in bronchoalveolar lavage fluid, and down-regulated Th2 inflammatory factors, including IL-4, IL-5, and OVA induced IL-13. Meanwhile, miRNA-182-5p agomir reduced the peribronchial inflammatory cell infiltration, goblet cell proliferation and collagen deposition. In summary, targeting miRNA-182-5p may provide a new strategy for the treatment of asthma.
Asunto(s)
Asma , MicroARNs , Animales , Asma/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-13/genética , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , NADPH Oxidasa 4/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ovalbúmina/efectos adversosRESUMEN
Bronchial asthma poses a considerable burden on both individual patients and public health. Sesamin is a natural lignan that relieves asthma. However, the potential regulatory mechanism has not been fully validated. In this study, we revealed the mechanism of sesamin in inhibiting airway inflammation of asthma. In cockroach extract (CRE)-induced asthmatic mice, sesamin efficiently inhibited inflammatory cell infiltration, expressions of total and CRE-specific IgE in serum, and inflammatory cytokines (including IL-4, 5, 13) in bronchoalveolar lavage fluid. Further study revealed that sesamin inhibited Th2 cells in the mediastinal lymph nodes and spleen, the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin, and apoptosis of lung airway epithelial cells. In vitro, sesamin had no significant cytotoxicity to BEAS-2B cells. Sesamin significantly increased TNF-α/IL-4-induced superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 related factor 2 (Nrf2), and decreased malondialdehyde. Sesamin also inhibited TNF-α/IL-4-induced mitochondrial reactive oxygen species, increased mitochondrial membrane potential, and reduced cell apoptosis as well as PINK1/Parkin expression and translocation to mitochondria. Conclusively, sesamin may relieve asthma airway inflammation by inhibiting mitophagy and mitochondrial apoptosis. Thus, sesamin may become a potential therapeutic agent for asthma.
Asunto(s)
Asma , Lignanos , Animales , Apoptosis , Asma/tratamiento farmacológico , Asma/genética , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Dioxoles , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Interleucina-4/metabolismo , Lignanos/metabolismo , Pulmón/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia , Proteínas Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Macrophages substantially influence the development, progression, and complications of inflammation-driven diseases. Although numerous studies support the critical role of Notch signaling in most inflammatory diseases, there is limited data on the role of Notch signaling in TLR4-induced macrophage activation and interaction of Notch signaling with other signaling pathways in macrophages during inflammation, such as the NF-κB pathway. This study confirmed that stimulation with lipopolysaccharide (LPS), a TLR4 ligand, upregulated Notch1 expression in monocyte/macrophage-like RAW264.7 cells and bone marrow-derived macrophages (BMDMs). LPS also induced increased mRNA expression of Notch target genes Notch1 and Hes1 in macrophages, suggesting that TLR4 signaling enhances activation of the Notch pathway. The upregulation of Notch1, Notch1 intracellular domain (NICD), and Hes1 proteins by LPS treatment was inhibited by DAPT, a Notch1 inhibitor. Additionally, the increased TNF-α, IL-6, and IL-1ß expression induced by LPS was inhibited by DAPT and rescued by jagged1, a Notch1 ligand. Furthermore, suppression of Notch signaling by DAPT upregulated Cylindromatosis (CYLD) expression but downregulated TRAF6 expression, IκB kinase (IKK) α/ß phosphorylation, and subsequently, phosphorylation and degradation of IκB-α, indicating that DAPT inhibited NF-κB activation triggered by TLR-4. Interestingly, DAPT did not inhibit the increased MyD88 expression induced by LPS. Our study findings demonstrate that macrophage stimulation via the TLR4 signaling cascade triggers activation of Notch1 signaling, which regulates the expression patterns of genes involved in pro-inflammatory responses by activating NF-κB. This effect may be dependent on the CYLD-TRAF6-IKK pathway. Thus, Notch1 signaling may provide a therapeutic target against infectious and inflammation-driven diseases.
Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Inhibidores de Agregación Plaquetaria/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Receptor Notch1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/farmacología , Receptor Toll-Like 4/genéticaRESUMEN
This study is to investigate the role of Sphingosine-1-phosphate (S1P) in the asthma progression, and the involvement of autophagy. Airway remodeling mice were subjected to the HE, PAS, and Masson staining. Protein expression levels in the tissues, samples and model cells were detected with ELISA, Western blot analysis, and immunohistochemical/immunofluorescent analysis. The S1P2 receptor antagonist JTE-013 decreased the inflammatory cell infiltration and goblet cell production in asthmatic mice tissues. The IL-1, IL-4, IL-5 and serum IgE contents were decreased in bronchoalveolar lavage fluid, while the Beclin1 expression in lung tissues was decreased. The LC3B1 to LC-3B2 conversion was decreased, with increased P62 accumulation and decreased p-P62 expression. In airway remodeling mice, JTE-013 significantly decreased collagen deposition in lung tissues and decreased smooth muscle cell smooth muscle activating protein expression. In lung tissue, the expression levels of Beclin1 were decreased, with decreased LC3B1 to LC-3B2 conversion, as well as the increased P62 accumulation and decreased p-P62 expression. However, these effects were reversed by the RAC1 inhibitor EHT 1864. Similar results were observed for the silencing of S1P2 receptor in the cells, as shown by the decreased Beclin1 expression, decreased LC3B1 to LC-3B2 conversion, increased P62 accumulation, and decreased p-P62 expression. The smooth muscle activators were significantly decreased in the JTE-013 and EHT1864 groups, and the EHT 1864 + S1P2-SiRNA expression level was increased. S1P is involved in the progression of asthma and airway remodeling, which may be related to the activation of S1PR2 receptor and inhibition of autophagy through RAC1.