RESUMEN
BACKGROUND: Multimodal analgesic strategy is pivotal for enhanced recovery after surgery. The objective of this trial was to assess the effect of subanesthetic esketamine vs. placebo combined with erector spinae plane block (ESPB) vs. intercostal nerve block (ICNB) on postoperative recovery following thoracoscopic lung resection. MATERIALS AND METHODS: This randomized, controlled, 2×2 factorial trial was conducted at a university hospital in Suzhou, China. One hundred adult patients undergoing thoracoscopic lung surgery were randomized to one of four groups (esketamine-ESPB, esketamine-ICNB, placebo-ESPB, and placebo-ICNB) to receive i.v. esketamine 0.3 mg/kg or normal saline placebo combined with ESPB or ICNB using 0.375% ropivacaine 20 mL. All patients received flurbiprofen axetil and patient-controlled fentanyl. The primary outcome was quality of recovery (QoR) at 24 h postoperatively, assessed using the QoR-15 scale, with a minimal clinically important difference of 6.0. RESULTS: The median age was 57 years and 52% were female. No significant interaction effect was found between esketamine and regional blocks on QoR (P=0.215). The QoR-15 score at 24 h was 111.5±5.8 in the esketamine group vs. 105.4±4.5 in the placebo group (difference=6.1, 95% CI, 4.0-8.1; P<0.001); 109.7±6.2 in the ESPB group vs. 107.2±5.6 in the ICNB group (difference=2.5, 95% CI, 0.2-4.9; P=0.033; not statistically significant after Bonferroni correction). Additionally, esketamine resulted in higher QoR-15 scores at 48 h (difference=4.6) and hospital discharge (difference=1.6), while ESPB led to a higher QoR-15 score at 48 h (difference=3.0). CONCLUSIONS: For patients undergoing thoracoscopic lung resection, subanesthetic esketamine improved QoR after surgery, while ICNB can be used interchangeably with ESPB as a component of multimodal analgesia.
RESUMEN
The heavy metal cadmium (Cd), known for its high toxicity, poses a grave threat to human health through the food chain. N6-methyladenosine (m6A), the most abundant internal modification, regulates plant adaptation to various adversities, yet the panorama of m6A modifications in switchgrass under cadmium stress remains elusive. This study examines the physiological responses of switchgrass roots and shoots exposed to 50 µM CdCl2, alongside an overview of transcriptome-wide m6A methylation patterns. After cadmium treatment, methylation modifications are primarily enriched near stop codons and the 3'UTR region, with a negative correlation between m6A modification and gene expression levels. In shoots, approximately 58 % of DEGs with m6A modifications show upregulation in expression and decrease in m6A peaks, including zinc transporter 4-like (ZIP4). In roots, about 43 % of DEGs with m6A modifications exhibit downregulation in expression and increase in m6A peaks, such as the ABC transporter family member (ABCG25). We further validate the m6A enrichment, gene expression and mRNA stability of ZIP4 in response to Cd treatment. The results suggest that the negative correlation of m6A enrichment and gene expression is due to altered mRNA stability. Our study establishes an m6A regulatory network governing cadmium transport in switchgrass roots and shoots, offering new avenues for candidate gene manipulation in phytoremediation applications of heavy metal pollution.
Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Panicum , Raíces de Plantas , Transcriptoma , Transcriptoma/efectos de los fármacos , Cadmio/toxicidad , Panicum/genética , Panicum/efectos de los fármacos , Panicum/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metilación , Adenosina/análogos & derivados , Adenosina/metabolismo , Estrés Fisiológico , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Redes Reguladoras de Genes/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Sevoflurane, as a commonly used inhaled anesthetic for pediatric patients, has been reported that multiple sevoflurane exposures are associated with a greater risk of developing neurocognitive disorder. N6-Methyladenosine (m6A), as the most common mRNA modification in eukaryotes, has emerged as a crucial regulator of brain function in processes involving synaptic plasticity, learning and memory, and neurodevelopment. Nevertheless, the relevance of m6A RNA methylation in the multiple sevoflurane exposure-induced developmental neurotoxicity remains mostly elusive. Herein, we evaluated the genome-wide m6A RNA modification and gene expression in hippocampus of mice that received with multiple sevoflurane exposures using m6A-sequencing (m6A-seq) and RNA-sequencing (RNA-seq). We discovered 19 genes with differences in the m6A methylated modification and differential expression in the hippocampus. Among these genes, we determined that a total of nine differential expressed genes may be closely associated with the occurrence of developmental neurotoxicity induced by multiple sevoflurane exposures. We further found that the alkB homolog 5 (ALKBH5), but not methyltransferase-like 3 (METTL3) and Wilms tumor 1-associated protein (WTAP), were increased in the hippocampus of mice that received with multiple sevoflurane exposures. And the IOX1, as an inhibitor of ALKBH5, significantly improved the learning and memory defects and reduced neuronal damage in the hippocampus of mice induced by multiple sevoflurane exposures. The current study revealed the role of m6A methylated modification and m6A-related regulators in sevoflurane-induced cognitive impairment, which might provide a novel insight into identifying biomarkers and therapeutic strategies for inhaled anesthetic-induced developmental neurotoxicity.
Asunto(s)
Adenosina , Desmetilasa de ARN, Homólogo 5 de AlkB , Hipocampo , Síndromes de Neurotoxicidad , Sevoflurano , Sevoflurano/toxicidad , Animales , Ratones , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Adenosina/análogos & derivados , Adenosina/metabolismo , Anestésicos por Inhalación/toxicidad , Ratones Endogámicos C57BL , Metilación/efectos de los fármacos , Metiltransferasas/metabolismo , Metiltransferasas/genéticaRESUMEN
N6-methyladenosine (m6A), a nucleotide modification that is frequently seen in RNA, plays a crucial role in plant growth, development and stress resistance. However, the m6A regulatory machinery in switchgrass (Panicum virgatum L.), a model plant for cellulose-to-ethanol conversion, remains largely unknown. In this study, we identified 57 candidate genes involved in m6A-regulation in the switchgrass genome, and analyzed their chromosomal distribution, evolutionary relationships, and functions. Notably, we observed distinct gene expression patterns under salt and drought stress, with salt stress inducing writer and eraser genes, alongside drought stress predominantly affecting reader genes. Additionally, we knocked out PvALKBH10, an m6A demethylase gene, via CRISPR/Cas9 and found its potential function in controlling flowering time. This study provides insight into the genomic organization and evolutionary features of m6A-associated putative genes in switchgrass, and therefore serves as the basis for further functional studies.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Panicum , Proteínas de Plantas , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Genes de Plantas , Familia de MultigenesRESUMEN
BACKGROUND: Repeated neonatal sevoflurane exposures led to neurocognitive disorders in young mice. We aimed to assess the role of microglia and complement C1q in sevoflurane-induced neurotoxicity and explore the underlying mechanisms. METHODS: Neonatal mice were treated with sevoflurane on postnatal days 6, 8, and 10, and the Morris water maze was performed to assess cognitive functions. For mechanistic explorations, mice were treated with minocycline, C1q-antibody ANX005, and sialidase-inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA) before sevoflurane exposures. Western blotting, RT-qPCR, Golgi staining, 3D reconstruction and engulfment analysis, immunofluorescence, and microglial morphology analysis were performed. In vitro experiments were conducted in microglial cell line BV2 cells. RESULTS: Repeated neonatal sevoflurane exposures resulted in deficiencies in learning and cognition of young mice, accompanied by microglial activation and synapse loss. Sevoflurane enhanced microglia-mediated synapse elimination through C1q binding to synapses. Inhibition of microglial activation and phagocytosis with minocycline significantly reduced the loss of synapses. We further revealed the involvement of neuronal sialic acids in this process. The enhanced activity of sialidase by sevoflurane led to the loss of sialic acids, which facilitated C1q binding to synapses. Inhibition of C1q with ANX005 or inhibition of sialidase with NADNA significantly rescued microglia-mediated synapse loss and improved neurocognitive function. Sevoflurane enhanced the engulfment of BV2 cells, which was reversed by ANX005. CONCLUSIONS: Our findings demonstrated that C1q-mediated microglial synaptic elimination by enhancing desialylation contributed to sevoflurane-induced developmental neurotoxicity. Inhibition of C1q or sialidase may be a potential therapeutic strategy for this neurotoxicity.
RESUMEN
Background: There is still a controversy about the superiority of liposomal bupivacaine (LB) over traditional local anesthetics in postoperative analgesia after thoracic surgery. This study aims to determine the effect of LB versus bupivacaine hydrochloride (HCl) for preoperative ultrasound-guided erector spinae plane block (ESPB) on postoperative acute and chronic pain in patients undergoing video-assisted thoracoscopic lung surgery. Methods: This multicenter, randomized, double-blind, controlled trial will include 272 adult patients scheduled for elective video-assisted thoracoscopic lung surgery. Patients will be randomly assigned, 1:1 and stratified by site, to the liposomal bupivacaine (LB) group or the bupivacaine (BUPI) HCl group. All patients will receive ultrasound-guided ESPB with either LB or bupivacaine HCl before surgery and patient-controlled intravenous analgesia (PCIA) as rescue analgesia after surgery. The numeric rating scale (NRS) score will be assessed after surgery. The primary outcome is the area under the curve of pain scores at rest for 0-72 h postoperatively. The secondary outcomes include the total amount of opioid rescue analgesics through 0-72 h postoperatively, time to the first press on the PCIA device as rescue analgesia, the area under the curve of pain scores on activity for 0-72 h postoperatively, NRS scores at rest and on activity at different time points during the 0-72 h postoperative period, Quality of Recovery 15 scores at 72 h after surgery, and NRS scores on activity on postsurgical day 14 and postsurgical 3 months. Adverse events after the surgery are followed up to the postsurgical day 7, including postoperative nausea and vomiting, fever, constipation, dizziness, headache, insomnia, itching, prolonged chest tube leakage, new-onset atrial fibrillation, severe ventricular arrhythmia, deep venous thrombosis, pulmonary embolism, pulmonary atelectasis, cardiac arrest, ileus, urinary retention, chylothorax, pneumothorax, and organ failure. Analyzes will be performed first according to the intention to treat principle and second with the per-protocol analysis. Discussion: We hypothesize that LB for preoperative ultrasound-guided ESPB would be more effective than bupivacaine HCl in reducing postoperative pain in video-assisted thoracoscopic lung surgery. Our results will contribute to the optimization of postoperative analgesia regimens for patients undergoing video-assisted thoracoscopic lung surgery.Clinical trial registration:http://www.chictr.org.cn, identifier ChiCTR2300074852.
RESUMEN
Switchgrass is an important bioenergy crop valued for its biomass yield and abiotic tolerance. Alkali stress is a major abiotic stress that significantly impedes plant growth and yield due to high salinity and pH; however, the response mechanism of switchgrass to alkali stress remains limited. Here, we characterized PvARL1, an ARF-like gene, which was up-regulated in both the shoot and root tissues under alkali stress conditions. Overexpression of PvARL1 not only improved alkali tolerance but also promoted biomass yield with more tiller and higher plant height in switchgrass. Moreover, PvARL1 overexpression lines displayed higher capacities in the maintenance of water content and photosynthetic stability compared with the controls under alkali treatments. A significant reduction in the ratio of electrolyte leakage, MDA content, and reactive oxygen species (ROS) showed that PvARL1 plays a positive role in protecting cell membrane integrity. In addition, PvARL1 also negatively affected the K+ efflux or uptake in roots to alleviate ion toxicity under alkali treatments. Overall, our results suggest that PvARL1 functions as a positive regulator in plant growth as well as in the plant response to alkali stress, which could be used to improve switchgrass biomass yield and alkali tolerance genetically.
RESUMEN
N6-methyladenosine (m6A) RNA modification is critical for plant growth, development, and environmental stress response. While short-term stress impacts on m6A are well-documented, the consequences of prolonged stress remain underexplored. This study conducts a thorough transcriptome-wide analysis of m6A modifications following 28-day exposure to 200 mM NaCl. We detected 11,149 differentially expressed genes (DEGs) and 12,936 differentially methylated m6A peaks, along with a global decrease in m6A levels. Notably, about 62% of m6A-modified DEGs, including demethylase genes like PvALKBH6_N, PvALKBH9_K, and PvALKBH10_N, showed increased expression and reduced m6A peaks, suggesting that decreased m6A methylation may enhance gene expression under salt stress. Consistent expression and methylation patterns were observed in key genes related to ion homeostasis (e.g., H+-ATPase 1, High-affinity K+transporter 5), antioxidant defense (Catalase 1/2, Copper/zinc superoxide dismutase 2, Glutathione synthetase 1), and osmotic regulation (delta 1-pyrroline-5-carboxylate synthase 2, Pyrroline-5-carboxylate reductase). These findings provide insights into the adaptive mechanisms of switchgrass under long-term salt stress and highlight the potential of regulating m6A modifications as a novel approach for crop breeding strategies focused on stress resistance.
Asunto(s)
Adenosina/análogos & derivados , Panicum , Panicum/fisiología , Fitomejoramiento , Tolerancia a la Sal/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las PlantasRESUMEN
Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.
Asunto(s)
Anestésicos por Inhalación , Corteza Prefrontal , Sevoflurano , Animales , Sevoflurano/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratones , Anestésicos por Inhalación/toxicidad , Masculino , Animales Recién Nacidos , Femenino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estudio de Asociación del Genoma CompletoRESUMEN
AIMS: Myocardial injury after noncardiac surgery (MINS) is common in elderly patients and considered as an independent predictor of 30-day mortality after noncardiac surgery. Dexmedetomidine possesses cardiac-protective profile. Previous clinical studies have found that perioperative application of dexmedetomidine is associated with decreased 1-year mortality in patients undergoing cardiac surgery. The current study protocol aims to investigate the effects of dexmedetomidine on the incidence of MINS, complications, and 30-day mortality in elderly patients subjected to noncardiac surgery. METHODS: A multicenter, randomized, controlled, double-blind, prospective trial is designed to explore cardiac protection of dexmedetomidine in the elderly patients undergoing noncardiac surgery. A total of 960 patients aged over 65 years will be recruited and randomly assigned to dexmedetomidine group (group Dex) and normal saline placebo group (group NS) in a ratio of 1:1. Patients in group Dex will receive a bolus dose of 0.5 µg/kg dexmedetomidine within 10 min before surgical incision, followed by a consistent infusion at the rate of 0.3-0.5 µg/kg/h throughout the operation. Group NS patients will receive the same volume of normal saline. The primary outcome is the incidence of MINS via detecting the hs-TnT level within 3 days after the operation. The secondary outcome includes myocardial ischemic symptoms, the incidence of major adverse cardiovascular events (MACE) in hospital, length of ICU and postoperative hospital stay, the incidence of inhospital complications, and 30-day all-cause mortality. DISCUSSION: The results of the current study will illustrate the effect of dexmedetomidine on myocardial injury for elderly patients undergoing major noncardiac surgery. TRIAL REGISTRATION: The trial was registered with Chinese Clinical Trial Registry (CHICTR) on Aug 24, 2021 (ChiCTR2100049946, http://www.chictr.org.cn/showproj.aspx?proj=131804 ).
RESUMEN
OBJECTIVE: To compare the modified strategy for the right-sided double-lumen tube (R-DLT) placement using a combination of CT measurements and flexible video bronchoscopy guidance with traditional bronchoscopy technique. TRIAL DESIGN, SETTING AND PARTICIPANTS: Double-blind, parallel randomised control trial at a tertiary care medical centre in China. 100 patients undergoing video-assisted thoracoscopic surgery and requiring R-DLT were randomly allocated to the control group and the intervention group. INTERVENTION: The control group used the traditional bronchoscopy-guided technique. In the intervention group, the length and anteroposterior diameter of the right main bronchus (RMB) were measured on CT images to select the side and size of the Rüsch tube, and then a black depth marker was placed on the tube according to the difference between the length of the RMB and the bronchial cuff. Under the guidance of bronchoscopy, the depth marker should be placed parallel to the tracheal carina and a characteristic white line on the tube should be parallel to the midline of the tracheal carina. MAIN OUTCOMES: The primary endpoint was the positioning of right upper lobe (RUL) ventilatory slot and RUL bronchial orifice. The secondary endpoints included intubation data and perioperative adverse events. RESULTS: Compared with the control group, our modified strategy significantly increased the optimal and acceptable position rate (76% vs 98%, respectively; p<0.039), decreased the replacement rate (80% vs 94%; p=0.042), shortened the intubation time (101.4±7.3 s vs 75.2±8.1 s; p=0.019) and reduced the incidence of transient hypoxaemia (25% vs 6%; p=0.022), subglottic resistance (20% vs 6%; p=0.037), tracheobronchial injury (35% vs 13%; p=0.037) and postoperative RUL collapse (15% vs 2%; p=0.059). CONCLUSION: This study demonstrates the superiority of our strategy and provides a new viable method for R-DLT placement. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry (ChiCTR1900021676).
Asunto(s)
Broncoscopios , Broncoscopía , Humanos , Broncoscopía/efectos adversos , Intubación Intratraqueal/métodos , Tomografía Computarizada por Rayos X/métodos , Cirugía Torácica Asistida por VideoRESUMEN
Introduction: Urban ozone pollution in China is becoming increasingly serious. Climate warming, high temperatures, and ozone pollution all have significant impacts on human health. However, the synergistic effects of high temperatures and ozone pollution in summer on human health are rarely studied. China is at a critical stage of environmental pollution control. Assessing the health impact of high temperatures and ozone exposure on the number of deaths from circulatory diseases is of great significance for formulating ozone-related prevention and control policies. Methods: This study uses daily data on deaths from circulatory system diseases in Shijiazhuang from June to August during the summer of 2013-2016, as well as concurrent meteorological data and concentration of O3 and PM2.5 pollution data. The generalized additive model (GAM) with Poisson distribution, smooth curve threshold effect, and saturation effect method is used to control for confounding effects. Results: The study evaluates the impact of short-term exposure to temperature and ozone on deaths from circulatory system diseases and the synergistic effect after controlling for confounding factors. The results show that the impact of temperature and ozone on deaths from circulatory system diseases in Shijiazhuang is nonlinear, with a temperature threshold of 27.5°C and an ozone concentration threshold of 100 µg/m3. With an increase of temperature by 1°C, the risk of deaths for total population, men and women are 6.8%, 4.6% and 9.3%, respectively. The increase in temperature and ozone concentration has a greater impact on women; in men, the increase has a lag effect of 2 to 3 days, but the lag did not affect women. Discussion: In conclusion, high temperatures and high ozone concentration have synergistic enhancement effects on circulatory system diseases. Prevention and scientific management strategies of circulatory system diseases in high temperatures and high ozone environments should be strengthened.
Asunto(s)
Contaminantes Atmosféricos , Enfermedades Cardiovasculares , Sistema Cardiovascular , Ozono , Masculino , Humanos , Femenino , Contaminantes Atmosféricos/análisis , Temperatura , China/epidemiología , Sistema Cardiovascular/químicaRESUMEN
BACKGROUND: Multiple neonatal exposures to sevoflurane induce neurocognitive dysfunctions in rodents. The lack of cell type-specific information after sevoflurane exposure limits the mechanistic understanding of these effects. In this study, the authors tested the hypothesis that sevoflurane exposures alter the atlas of hippocampal cell clusters and have neuronal and nonneuronal cell type-specific effects in mice of both sexes. METHODS: Neonatal mice were exposed to 3% sevoflurane for 2 h at postnatal days 6, 8, and 10 and analyzed for the exposure effects at postnatal day 37. Single-nucleus RNA sequencing was performed in the hippocampus followed by in situ hybridization to validate the results of RNA sequencing. The Morris Water Maze test was performed to test neurocognitive function. RESULTS: The authors found sex-specific distribution of hippocampal cell types in control mice alongside cell type- and sex-specific effects of sevoflurane exposure on distinct hippocampal cell populations. There were important changes in male but not in female mice after sevoflurane exposure regarding the proportions of cornu ammonis 1 neurons (control vs. sevoflurane, males: 79.9% vs. 32.3%; females: 27.3% vs. 24.3%), dentate gyrus (males: 4.2% vs. 23.4%; females: 36.2% vs. 35.8%), and oligodendrocytes (males: 0.6% vs. 6.9%; females: 5.9% vs. 7.8%). In male but not in female mice, sevoflurane altered the number of significantly enriched ligand-receptor pairs in the cornu ammonis 1, cornu ammonis 3, and dente gyrus trisynaptic circuit (control vs. sevoflurane, cornu ammonis 1-cornu ammonis 3: 18 vs. 42 in males and 15 vs. 21 in females; cornu ammonis 1-dentate gyrus: 21 vs. 35 in males and 12 vs. 20 in females; cornu ammonis 3-dentate gyrus: 25 vs. 45 in males and 17 vs. 20 in females), interfered with dentate gyrus granule cell neurogenesis, hampered microglia differentiation, and decreased cornu ammonis 1 pyramidal cell diversity. Oligodendrocyte differentiation was specifically altered in females with increased expressions of Mbp and Mag. In situ hybridization validated the increased expression of common differentially expressed genes. CONCLUSIONS: This single-nucleus RNA sequencing study reveals the hippocampal atlas of mice, providing a comprehensive resource for the neuronal and nonneuronal cell type- and sex-specific effects of sevoflurane during development.
Asunto(s)
Giro Dentado , Hipocampo , Masculino , Femenino , Animales , Ratones , Sevoflurano/farmacología , Giro Dentado/metabolismo , Neuronas , Células PiramidalesRESUMEN
Background: The effects of anesthesia administration on sublingual microcirculation are unknown. It is unclear how sublingual microcirculation responds to ephedrine or phenylephrine administration. We hypothesized that microvascular perfusion is impaired under anesthesia. Materials and methods: We randomly divided 100 elderly patients undergoing laparoscopic rectal cancer surgery into phenylephrine and ephedrine groups in a 1:1 ratio. Ephedrine or phenylephrine was administered when MAP was < 80% for > 1 min. The heart rate (HR) and mean arterial pressure (MAP) were recorded every 5 min. Lactic acid was tested both pre- and postoperatively. The sublingual microcirculation characteristics of the microvascular flow index, the percentage of perfused vessels, the density of perfused vessels, and the heterogeneity index were monitored using a sidestream dark field imaging device. Results: Their MAP showed an evident decrease of > 20%. At this point, the HR, microvascular flow index, perfused vessel density, and proportion of perfused vessels decreased similarly in ephedrine and phenylephrine groups. Conversely, the heterogeneity index increased in both groups. After phenylephrine and ephedrine administration, ephedrine treatment significantly increased the proportion of perfused vessels, microvascular flow index, and HR compared with phenylephrine treatment. Conclusion: General anesthesia was associated with reduced MAP, HR, and sublingual microcirculation in elderly patients undergoing laparoscopic rectal cancer surgery. The results of ephedrine treatment were better than those of phenylephrine treatment in terms of HR, increased the proportion of perfused vessels, and microvascular flow index of sublingual microcirculation. Clinical trial registration: [www.ClinicalTrials.gov], identifier [ChiCTR-2000035959].
RESUMEN
Renal microvascular endothelial cells (RMECs), which are closely related to regulation of vascular reactivity and modulation of inflammation, play a crucial role in the process of renal ischemia and reperfusion (I/R) injury. Previous studies have reported the protective effects of dexmedetomidine (DEX) against renal I/R injury, but little is known about the role of DEX on RMECs. This study aimed to investigate whether DEX alleviated renal I/R injury via acting on the RMECs. Mice underwent bilateral renal artery clamping for 45 min followed by reperfusion for 48 h, and the cultured neonatal mice RMECs were subjected to hypoxia for 1 h followed by reoxygenation (H/R) for 24 h. The results suggest that DEX alleviated renal I/R injury in vivo and improved cell viability of RMECs during H/R injury in vitro. Gene sequencing revealed that the PI3K/Akt was the top enriched signaling pathway and the endothelial cells were widely involved in renal I/R injury. DEX activated phosphorylation of PI3K and Akt, increased eNOS expression, and attenuated inflammatory responses. In addition, the results confirmed the distribution of α2 adrenoreceptor (α2 -AR) in RMECs. Furthermore, the protective effects of DEX against renal I/R injury were abolished by α2 -AR antagonist (atipamezole), which was partly reversed by the PI3K agonist (740 Y-P). These findings indicated that DEX protects against renal I/R injury by activating the PI3K/Akt-eNOS pathway and inhibiting inflammation responses via α2 -AR in RMECs.
Asunto(s)
Dexmedetomidina , Daño por Reperfusión , Animales , Dexmedetomidina/metabolismo , Dexmedetomidina/farmacología , Células Endoteliales/metabolismo , Inflamación/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: Prolonged spinal surgery in the prone position may lead to postoperative pulmonary complications (PPCs). We aimed to compare the effects of driving pressure-guided ventilation versus conventional protective ventilation on postoperative pulmonary complications in patients undergoing spinal surgery in the prone position. We hypothesized that driving pressure-guided ventilation would be associated with a decreased incidence of PPC. METHODS: We enrolled 78 patients into this single-center, double-blind, randomized controlled trial. The driving pressure (DP) group (n = 40) received a tidal volume of 6 ml/kg of predicted body weight, individualized positive end-expiratory pressure (PEEP) which produced the lowest driving pressure (plateau pressure-PEEP), and a recruitment maneuver. The protective ventilation (PV) group (n = 38) received the same tidal volume and recruitment maneuver but with a fixed PEEP of 5 cm H2O. Our primary outcome was postoperative pulmonary complications based on Lung Ultrasound Scores (LUS) at the end of the surgery and the simplified Clinical Pulmonary Infection Score (sCPIS) on postoperative days (POD) 1 and 3. RESULTS: DP patients had lower LUS and POD1 sCPIS than the PV group (p < 0.01). DP patients had lower driving pressure during the surgery than PV patients (p < 0.01). Perioperative arterial blood gases and hemodynamic parameters were comparable between the two groups (p > 0.05). The visual pain score (VAS) in postoperative days, drainage, and lengths of stay (LOS) were also similar between the two groups (p > 0.05). CONCLUSIONS: Driving pressure-guided ventilation during spinal surgery with a prolonged prone patient position may reduce the incidence of early postoperative pulmonary complications, compared with conventional protective ventilation.
Asunto(s)
Enfermedades Pulmonares , Gases , Humanos , Pulmón/cirugía , Enfermedades Pulmonares/epidemiología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/prevención & control , Respiración con Presión Positiva/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Volumen de Ventilación PulmonarRESUMEN
Ischemia-reperfusion (I/R) injury is a serious clinical pathology associated with acute kidney injury (AKI). Ferroptosis is non-apoptotic cell death that is known to contribute to renal I/R injury. Dexmedetomidine (Dex) has been shown to exert anti-inflammatory and organ protective effects. This study aimed to investigate the detailed molecular mechanism of Dex protects kidneys against I/R injury through inhibiting ferroptosis. We established the I/R-induced renal injury model in mice, and OGD/R induced HEK293T cells damage in vitro. RNA-seq analysis was performed for identifying the potential therapeutic targets. RNA-seq analysis for differentially expressed genes (DEGs) reported Acyl-CoA synthetase long-chain family member 4 (ACSL4) related to ferroptosis and inflammation in I/R mice renal, which was validated in rodent renal. Liproxstatin-1, the specific small-molecule inhibitor of ferroptosis, significantly attenuated ferroptosis-mediated renal I/R injury with decreased LPO, MDA, and LDH levels, and increased GSH level. Inhibiting the activity of ACSL4 by the Rosiglitazone (ROSI) resulted in the decreased ferroptosis and inflammation, as well as reduced renal tissue damage, with decreasing LPO, MDA and LDH level, increasing GSH level, reducing COX2 and increasing GPx4 protein expression, and suppressing the TNF-α mRNA and IL-6 mRNA levels. Dex as a α2-adrenergic receptor (α2-AR) agonist performed renal protective effects against I/R-induced injury. Our results also revealed that Dex administration mitigated tissue damage, inhibited ferroptosis, and downregulated inflammation response following renal I/R injury, which were associated with the suppression of ACSL4. In addition, ACSL4 overexpression abolishes Dex-mediated protective effects on OGD/R induced ferroptosis and inflammation in HEK293T cells, and promotion of ACSL4 expression by α2-AR inhibitor significantly reversed the effects on the protective role of Dex. This present study indicated that the Dex attenuates ferroptosis-mediated renal I/R injury and inflammation by inhibiting ACSL4 via α2-AR.
RESUMEN
PURPOSE: Apoptosis induced by excessive endoplasmic reticulum (ER) stress is accompanied by the occurrence and progression of myocardial ischemia/reperfusion (I/R) injury. COX-2 is also known to affect the development of I/R damage in myocardium. However, the interaction between COX-2 and ER stress in aggravating myocardial I/R lesion is not well characterized. Therefore, the purpose of our research was to explore the interaction between COX-2 and ER stress on myocardial apoptosis. METHODS: The left anterior descending (LAD) coronary artery was ligatured with a 6-0# suture for 0.5 hours and subsequently subjected to reperfusion for 3 hours to simulate myocardial I/R in mice. Oxygen glucose deprivation/reoxygenation (OGD/R) was performed on H9c2 cells to construct an in vitro model of this experiment. NS398 (COX-2 specific inhibitor) and Salubrinal (Sal, ER stress inhibitor) were administered to assess the function of COX-2 and ER stress in myocardial I/R impairment. CCK-8 assay was used to evaluate the viability of H9c2 cells under different treatment conditions. TUNEL and Hoechst staining were used to detect the occurrence of apoptosis. Infarct area/area at risk and Hematoxylin-eosin stained sections were assessed after I/R. Protein expressions of glucose-regulated protein 78 (GRP78), COX-2, phosphorylation of eukaryotic translation initiation factor 2 alpha (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), and Cleaved caspase 3 in the myocardium were examined using Western blotting. Changes in Cleaved caspase 3 expression in myocardial slices were measured by immunohistochemistry. RESULTS: Sal or NS398 partly reduced I/R-induced damage as testified by the apparent decrease in infarct size after I/R and reduced cell viability following OGD/R. Sal distinctly increased p-eIF2α, but caused decreased expression of COX-2, Cleaved caspase 3, and ER stress-associated proteins after I/R, suggesting that Sal effectively inhibited ER stress, apoptosis, and COX-2. Pretreatment with NS398 blocked I/R or OGD/R-induced upregulation of COX-2, Cleaved caspase 3, and ER stress-related marker proteins. CONCLUSIONS: Interaction of COX-2 and ER stress regulates apoptosis and contributes to Myocardial lesion induced by I/R.
RESUMEN
Importance: Delayed graft function (DGF) is a risk factor for acute rejection and graft failure after kidney transplant. Previous studies have suggested that dexmedetomidine may be renoprotective, but whether the use of dexmedetomidine would improve kidney allograft function is unknown. Objective: To investigate the effects of perioperative dexmedetomidine on DGF following a donation-after-cardiac-death (DCD) kidney transplant. Design, Setting, and Participants: This single-center, double-blind, placebo-controlled randomized clinical trial was conducted at The First Affiliated Hospital of Soochow University in Suzhou, China. Adults (18 years or older) who were scheduled for DCD kidney transplant were enrolled between September 1, 2019, and January 28, 2021, and then randomized to receive either dexmedetomidine or normal saline (placebo). One-year postoperative outcomes were recorded. All analyses were based on the modified intention-to-treat population. Interventions: Patients who were randomized to the dexmedetomidine group received a 24-hour perioperative dexmedetomidine intravenous infusion (0.4 µg/kg/h intraoperatively and 0.1 µg/kg/h postoperatively). Patients who were randomized to the normal saline group received an intravenous infusion of the placebo with the same dose regimen as the dexmedetomidine. Main Outcomes and Measures: The primary outcome was the incidence of DGF, defined as the need for dialysis in the first posttransplant week. The prespecified secondary outcomes were in-hospital repeated dialysis in the first posttransplant week, in-hospital acute rejection, and serum creatinine, serum cystatin C, estimated glomerular filtration rate, need for dialysis, and patient survival on posttransplant day 30. Results: Of the 114 patients enrolled, 111 completed the study (mean [SD] age, 43.4 [10.8] years; 64 male patients [57.7%]), of whom 56 were randomized to the dexmedetomidine group and 55 to the normal saline group. Dexmedetomidine infusion compared with normal saline reduced the incidence of DGF (17.9% vs 34.5%; odds ratio [OR], 0.41; 95% CI, 0.17-0.98; P = .04) and repeated dialysis (12.5% vs 30.9%; OR, 0.32; 95% CI, 0.13-0.88; P = .02, which was not statistically significant after multiple testing corrections), without significant effect on other secondary outcomes. Dexmedetomidine vs normal saline infusion led to a higher median (IQR) creatinine clearance rate on postoperative days 1 (9.9 [4.9-21.2] mL/min vs 7.9 [2.0-10.4] mL/min) and 2 (29.6 [9.7-67.4] mL/min vs 14.6 [3.8-45.1] mL/min) as well as increased median (IQR) urine output on postoperative days 2 (106.5 [66.3-175.6] mL/h vs 82.9 [27.1-141.9] mL/h) and 7 (126.1 [98.0-151.3] mL/h vs 107.0 [82.5-137.5] mL/h) and at hospital discharge discharge (110.4 [92.8-121.9] mL/h vs 97.1 [77.5-113.8] mL/h). Three patients (5.5%) from the normal saline group developed allograft failure by the post hoc 1-year follow-up visit. Conclusions and Relevance: This randomized clinical trial found that 24-hour perioperative dexmedetomidine decreased the incidence of DGF after DCD kidney transplant. The findings support the use of dexmedetomidine in kidney transplants. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR1900025493.
Asunto(s)
Dexmedetomidina , Trasplante de Riñón , Adulto , Muerte , Funcionamiento Retardado del Injerto/epidemiología , Funcionamiento Retardado del Injerto/etiología , Funcionamiento Retardado del Injerto/prevención & control , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Diálisis Renal/efectos adversos , Solución SalinaRESUMEN
Arylalkylamine N-acetyltransferase (AANAT) catalyses the acetylation of serotonin, a rate-limiting process in melatonin biosynthesis. To obtain better insight into the underlying mechanism of AANAT's actions in switchgrass growth, flowering and defence, we performed integrated morphological, physiological and omics analyses between overexpressed oAANAT transgenic lines in wild-type and transgenic control (expressing only the empty vector) plants. We showed that oAANAT played pivotal roles in modulating plant growth through its regulation of cell elongation, and regulating flowering through photoperiod and GA pathways. In relation to photosynthesis, oAANAT promoted photosynthetic efficiency primarily through regulating leaf anatomical structures, stomatal development and chlorophyll metabolism. Moreover, oAANAT overexpression can trigger a number of defence responses or strategies, including antioxidant enzymatic properties, non-enzymatic capacity, significantly activated phenylpropanoid biosynthesis, and adaptive morphological characteristics. This study unveils the possible molecular mechanisms underlying oAANAT dependent melatonin functions in switchgrass, providing an important starting point for further analyses.