Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
eNeuro ; 11(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084906

RESUMEN

Comorbid chronic neuropathic pain and anxiety is a common disease that represents a major clinical challenge. The underlying mechanisms of chronic neuropathic pain and anxiety are not entirely understood, which limits the exploration of effective treatment methods. Glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) have been implicated in regulating pain, but the potential roles of the vlPAG in neuropathic pain-induced anxiety have not been investigated. Herein, whole-cell recording and immunofluorescence showed that the excitability of CamkIIα neurons in the vlPAG (vlPAGCamkIIα+ neurons) was decreased in mice with spared nerve injury (SNI), while electroacupuncture (EA) activated these neurons. We also showed that chemogenetic inhibition of vlPAGCamkIIα+ neurons resulted in allodynia and anxiety-like behaviors in naive mice. Furthermore, chemogenetic activation of vlPAGCamkIIα+ neurons reduced anxiety-like behaviors and allodynia in mice with SNI, and EA had a similar effect in alleviating these symptoms. Nevertheless, EA combined with chemogenetic activation failed to further relieve allodynia and anxiety-like behaviors. Artificial inhibition of vlPAGCamkIIα+ neurons abolished the analgesic and anxiolytic effects of EA. Overall, our study reveals a novel mechanism of neuropathic pain-induced anxiety and shows that EA may relieve comorbid chronic neuropathic pain and anxiety by activating vlPAGCamkIIα+ neurons.


Asunto(s)
Ansiedad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Electroacupuntura , Neuralgia , Neuronas , Sustancia Gris Periacueductal , Animales , Neuralgia/terapia , Electroacupuntura/métodos , Neuronas/fisiología , Neuronas/metabolismo , Masculino , Ansiedad/terapia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Hiperalgesia/terapia , Dolor Crónico/terapia , Ácido Glutámico/metabolismo , Modelos Animales de Enfermedad , Conducta Animal/fisiología
2.
J Med Chem ; 67(9): 7112-7129, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38647397

RESUMEN

Research into kappa opioid receptor (KOR) agonists with attenuated central-nervous-system side effects is a critical focus for developing productive and safe analgesics. Herein, a series of ortho-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoethano-tetrahydronorthebaines were designed, synthesized, and subjected to bioassays. Compound 7a exhibited high subtype selectivity and potent agonistic activity toward KOR (KOR, Ki = 3.9 nM, MOR/KOR = 270, DOR/KOR = 1075; [35S]GTPγS binding, EC50 = 3.4 nM). Additionally, this compound exhibited robust and persistent antinociceptive effects in rodent models with different animal strains (hot plate test, ED50 = 0.20-0.30 mg/kg, i.p.; abdominal constriction test, ED50 = 0.20-0.60 mg/kg, i.p.), with its KOR-mediated mechanism for antinociception firmly established. Notably, compound 7a, unlike conventional KOR agonists, displayed minimal sedation and aversion at the antinociceptive ED50 dose. This feature addresses a crucial limitation in existing KOR agonists, positioning compound 7a as a promising novel therapeutic agent.


Asunto(s)
Receptores Opioides kappa , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Animales , Ratones , Relación Estructura-Actividad , Masculino , Humanos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/síntesis química , Hipnóticos y Sedantes/química , Ratas , Analgésicos/farmacología , Analgésicos/síntesis química , Analgésicos/química , Descubrimiento de Drogas , Ratas Sprague-Dawley , Cricetulus
3.
Acta Pharmacol Sin ; 45(5): 945-958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326624

RESUMEN

Glutamatergic neurons in ventral pallidum (VPGlu) were recently reported to mediate motivational and emotional behavior, but its role in opioid addiction still remains to be elucidated. In this study we investigated the function of VPGlu in the context-dependent heroin taking and seeking behavior in male rats under the ABA renewal paradigm. By use of cell-type-specific fiber photometry, we showed that the calcium activity of VPGlu were inhibited during heroin self-administration and context-induced relapse, but activated after extinction in a new context. The drug seeking behavior was accompanied by the decreased calcium signal of VPGlu. Chemogenetic manipulation of VPGlu bidirectionally regulated heroin taking and seeking behavior. Anterograde tracing showed that the lateral habenula, one of the epithalamic structures, was the major output region of VPGlu, and its neuronal activity was consistent with VPGlu in different phases of heroin addiction and contributed to the motivation for heroin. VPGlu axon terminals in LHb exhibited dynamic activity in different phases of heroin addiction. Activation of VPGlu-LHb circuit reduced heroin seeking behavior during context-induced relapse. Furthermore, the balance of excitation/inhibition from VP to LHb was shifted to enhanced glutamate transmission after extinction of heroin seeking motivation. Overall, the present study demonstrated that the activity of VPGlu was involved in the regulation of heroin addiction and identified the VPGlu-LHb pathway as a potential intervention to reduce heroin seeking motivation.


Asunto(s)
Prosencéfalo Basal , Ácido Glutámico , Dependencia de Heroína , Neuronas , Ratas Sprague-Dawley , Animales , Masculino , Dependencia de Heroína/metabolismo , Dependencia de Heroína/psicología , Prosencéfalo Basal/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Comportamiento de Búsqueda de Drogas , Heroína , Ratas , Autoadministración , Habénula/metabolismo
4.
J Mol Neurosci ; 74(1): 3, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183534

RESUMEN

Although the antidepressant-like effect of magnolol has been revealed in previous reports, the mechanism remains unclear. In this study, the antidepressant-like effect of magnolol on corticosterone-induced (CORT-induced) mice was investigated in vivo. After 21 days of CORT induction, the mice showed marked depressive-like behaviors, with a decrease in sucrose preference score and an increase in immobility time in the tail suspension test (TST) and forced swimming test (FST). Pretreatment with either magnolol (50 mg/kg, i.p.) or the kappa opioid receptor (KOR) antagonist nor-BNI (10 mg/kg, i.p.) prevented CORT-induced depression-like behavior and reduced CORT-induced dynorphin (DYN A) elevation in the hippocampal ventral DG. However, no depression-like behavior was observed in mice with KOR downregulation in the ventral DG. We further found that upregulation of DYN A in the DG caused depression-like behavior, which was blocked by intraperitoneal injection of nor-BNI and modulated by magnolol. The present study demonstrated that magnolol could ameliorate CORT-induced depression-like behaviors, by modulating the DYN A/KOR system in the ventral DG of the hippocampus.


Asunto(s)
Antidepresivos , Depresión , Animales , Ratones , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Corticosterona
5.
Biomed Pharmacother ; 170: 115957, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042115

RESUMEN

Excessive deposition of monosodium urate (MSU) crystal in the joint results in gout arthritis, which triggers severe pain and affects life quality. Oxidative stress is a pivotal mechanism that contributes to etiology of gout pain and inflammation. Here we investigated whether activating Nrf2, which plays important roles in regulating endogenous antioxidant response, would attenuate gout arthritis via promoting antioxidant signaling in joint tissues. Gout arthritis model was established by intra-articular injection of MSU (500 µg/ankle) into the right ankle joint of mouse. Pharmacologically activating Nrf2 by activator oltipraz (50, 100 or 150 mg/kg, intraperitoneal) at 1 h before and 5, 23, 47 h after model establishment dose-dependently inhibited joint inflammation, mechanical and heat hypersensitivities in model mice. Oltipraz (100 mg/kg) reversed gait impairments without altering locomotor activity and reduced neutrophil infiltrations in ankle joints. In vitro studies revealed oltipraz (25 µM) inhibited MSU-induced ROS production in mouse macrophages and improved mitochondrial bioenergetics impairments caused by MSU. In vivo ROS imaging combined with biochemical assays confirmed the antioxidant effects of oltipraz on model mice. Nrf2 activation inhibited pro-inflammatory cytokine overproduction in ankle joint and attenuated the overexpression and enhancement in TRPV1 channel in DRG neurons innervating hind limb. Therapeutic effects of oltipraz were abolished by inhibiting Nrf2 or in Nrf2 knockout mice. These results suggest pharmacologically activating Nrf2 alleviates gout pain, gait impairments, inflammation and peripheral sensitization via Nrf2-dependent antioxidant mechanism. Targeting Nrf2 may represent a novel treatment option for gout arthritis.


Asunto(s)
Artritis Gotosa , Gota , Ratones , Animales , Antioxidantes/uso terapéutico , Gota/inducido químicamente , Gota/complicaciones , Factor 2 Relacionado con NF-E2 , Ácido Úrico/efectos adversos , Especies Reactivas de Oxígeno , Artritis Gotosa/tratamiento farmacológico , Inflamación/inducido químicamente , Dolor/tratamiento farmacológico
6.
CNS Neurosci Ther ; 30(4): e14520, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38018559

RESUMEN

AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.


Asunto(s)
Ansiolíticos , Dolor Crónico , Electroacupuntura , Ratas , Animales , Ansiolíticos/farmacología , Dolor Crónico/inducido químicamente , Dolor Crónico/terapia , Serotonina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ansiedad/tratamiento farmacológico , Neuronas Serotoninérgicas , Ácido gamma-Aminobutírico/farmacología
7.
Nat Commun ; 14(1): 7903, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036497

RESUMEN

Ample evidence has suggested the stress etiology of depression, but the underlying mechanism is not fully understood yet. Here, we report that chronic social defeat stress (CSDS) attenuates the excitatory output of the claustrum (CLA) to the prelimbic cortex (PL) through the dynorphin/κ-opioid receptor (KOR) signaling, being critical for depression-related behaviors in male mice. The CSDS preferentially impairs the excitatory output from the CLA onto the parvalbumin (PV) of the PL, leading to PL micronetwork dysfunction by disinhibiting pyramidal neurons (PNs). Optogenetic activation or inhibition of this circuit suppresses or promotes depressive-like behaviors, which is reversed by chemogenetic inhibition or activation of the PV neurons. Notably, manipulating the dynorphin/KOR signaling in the CLA-PL projecting terminals controls depressive-like behaviors that is suppressed or promoted by optogenetic activation or inhibition of CLA-PL circuit. Thus, this study reveals both mechanism of the stress etiology of depression and possibly therapeutic interventions by targeting CLA-PL circuit.


Asunto(s)
Claustro , Receptores Opioides kappa , Masculino , Ratones , Animales , Receptores Opioides kappa/metabolismo , Dinorfinas , Depresión/etiología , Claustro/metabolismo , Transducción de Señal/fisiología , Ratones Endogámicos C57BL
8.
Neurobiol Dis ; 189: 106358, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977434

RESUMEN

The raphe nuclei, the primary resource of forebrain 5-HT, play an important but heterogeneous role in regulating subcortical excitabilities. Fundamental circuit organizations of different median raphe (MR) subsystems are far from completely understood. In the present study, using cell-specific viral tracing, Ca2+ fiber photometry and epilepsy model, we map out the forebrain efferent and afferent of different MR Pet+ subpopulations and their divergent roles in epilepsy. We found that PetMR neurons send both collateral and parallel innervations to different downstream regions through different subpopulations. Notably, CA3-projecting PetMR subpopulations are largely distinct from habenula (Hb)-projecting PetMR subpopulations in anatomical distribution and topological organization, while majority of the CA3-projecting PetMR subpopulations are overlapped with the medial septum (MS)-projecting PetMR subpopulations. Further, using Ca2+ fiber photometry, we monitor activities of PetMR neurons in hippocampal-kindling seizure, a classical epilepsy model with pathological mechanisms caused by excitation-inhibition imbalance. We found that soma activities of PetMR neurons are heterogeneous during different periods of generalized seizures. These divergent activities are contributed by different projection-defined PetMR subpopulations, manifesting as increased activities in CA3 but decreased activity in Hb resulting from their upstream differences. Together, our findings provide a novel framework of MR subsystems showing that projection-defined MR Pet+ subpopulations are topologically heterogenous with divergent circuit connections and are diversely implicated in seizures. This may help in the understanding of heterogeneous nature of MR 5-HTergic subsystems and the paradox roles of 5-HTergic systems in epilepsy.


Asunto(s)
Epilepsia , Neuronas , Humanos , Vías Nerviosas/fisiología , Neuronas/fisiología , Núcleos del Rafe/fisiología , Convulsiones/diagnóstico por imagen , Epilepsia/diagnóstico por imagen
9.
Addict Biol ; 28(9): e13323, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37644896

RESUMEN

Chronic exposure to methamphetamine (METH) causes severe and persistent cognitive impairment. The present study aimed to investigate the role of dynorphin/κ opioid receptor (KOR) system in the development of METH-induced cognitive impairment. We found that mice showed significant cognitive impairment in the novel object recognition test (NOR) following daily injections of METH (10 mg/kg) for seven consecutive days. Systemic blockade of KOR prevented METH-induced cognitive impairment by pretreatment of the selective KOR antagonist norBNI (10 mg/kg, i.p.) or KOR deletion. Then, significant increased dynorphin and KOR mRNA were observed exclusively in prelimbic cortex (PL) other than infralimbic cortex. Finally, microinjection with norBNI into PL also improved cognitive memory in METH-treated mice using NOR and spontaneous alternation behaviour test. Our results demonstrated that dynorphin/KOR system activation in PL may be a possible mechanism for METH-induced cognitive impairment and shed light on KOR antagonists as a potential neuroprotective agent against the cognitive deficits induced by drug abuse.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Metanfetamina , Animales , Ratones , Dinorfinas , Receptores Opioides kappa , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Metanfetamina/farmacología , Antagonistas de Narcóticos
10.
Eur J Med Chem ; 258: 115589, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37413884

RESUMEN

The discovery and development of novel µ-opioid receptor (MOR) antagonists is a significant area to combat Opioid Use Disorder (OUD). In this work, a series of para-substituted N-cyclopropylmethyl-nornepenthone derivatives were designed and synthesized and pharmacologically assayed. Compound 6a was identified as a selective MOR antagonist both in vitro and in vivo. Its molecular basis was elucidated using molecular docking and MD simulations. A subpocket on the extracellular side of the TM2 domain of MOR, in particular the residue Y2.64, was proposed to be responsible for the reversal of subtype selectivity and functional reversal of this compound.


Asunto(s)
Morfinanos , Morfinanos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Ligandos , Receptores Opioides mu , Antagonistas de Narcóticos/farmacología
11.
CNS Neurosci Ther ; 29(11): 3493-3506, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37248645

RESUMEN

AIMS: Anxiety disorders associated with pain are a common health problem. However, the underlying mechanisms remain poorly understood. We aimed to investigate the role of paraventricular nucleus (PVN)-central nucleus of the amygdala (CeA) oxytocinergic projections in anxiety-like behaviors induced by inflammatory pain. METHODS: After inflammatory pain induction by complete Freund's adjuvant (CFA), mice underwent elevated plus maze, light-dark transition test, and marble burying test to examine the anxiety-like behaviors. Chemogenetic, optogenetic, and fiber photometry recordings were used to modulate and record the activity of the oxytocinergic projections of the PVN-CeA. RESULTS: The key results are as follows: inflammatory pain-induced anxiety-like behaviors in mice accompanied by decreased activity of PVN oxytocin neurons. Chemogenetic activation of PVN oxytocin neurons prevented pain-related anxiety-like behaviors, whereas inhibition of PVN oxytocin neurons induced anxiety-like behaviors in naïve mice. PVN oxytocin neurons projected directly to the CeA, and microinjection of oxytocin into the CeA blocked anxiety-like behaviors. Inflammatory pain also decreased the activity of CeA neurons, and optogenetic activation of PVNoxytocin -CeA circuit prevented anxiety-like behavior in response to inflammatory pain. CONCLUSION: The results of our study suggest that oxytocin has anti-anxiety effects and provide novel insights into the role of PVNoxytocin -CeA projections in the regulation of anxiety-like behaviors induced by inflammatory pain.


Asunto(s)
Núcleo Amigdalino Central , Ratas , Ratones , Animales , Núcleo Hipotalámico Paraventricular , Oxitocina , Ratas Wistar , Ansiedad/etiología , Trastornos de Ansiedad , Dolor
12.
Eur J Pharmacol ; 942: 175532, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708979

RESUMEN

Depressive disorder is a psychiatric disease characterized by its main symptoms of low mood and anhedonia. Due to its complex etiology, current clinical treatments for depressive disorder are limited. In this study, we assessed the role of the δ opioid receptor (δOR) system in the development of chronic-restraint-stressed (CRS)-induced depressive behaviors. We employed a 21-day CRS model and detected the c-fos activation and protein levels' changes in enkephalin (ENK)/δOR. It was found that the hippocampus and amygdala were involved in CRS-induced depression. The expression of pro-enkephalin (PENK), the precursors of the endogenous ligand for δOR, was significantly decreased in the hippocampus and amygdala following CRS. We then treated the mice with SNC80, a specific δOR agonist, to examine its anti-depressant effects in the tail suspension test (TST), forced swimming test (FST), and sucrose preference test (SPT). SNC80 administration significantly reversed depressive-like behaviors, and this antidepressant effect could be blocked by a TrkB inhibitor: ANA-12. Although ANA-12 treatment had no significant effect on the expression of ENK/δOR, it blocked the promoting effects of brain-derived neurotrophic factor (BDNF)/tyrosine kinase B(TrkB) signaling by SNC80 in the hippocampus and amygdala. Therefore, the present study demonstrates that SNC80 exerts anti-depressant effects by up-regulating the BDNF/TrkB signaling pathway in the hippocampus and amygdala in CRS-induced depression and provides evidence that δOR's agonists may be potential anti-depressant therapeutic agents.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptores Opioides delta , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Receptores Opioides delta/metabolismo , Transducción de Señal , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Regulación hacia Arriba
13.
Stem Cells ; 41(4): 384-399, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36648299

RESUMEN

Although electroacupuncture (EA) stimulation is a widely used therapy for chronic pain and comorbid psychiatric disorders, its long-term effects on chronic neuropathic pain-induced depression and the underlying mechanisms remain elusive. In the present study, we found that EA stimulation was able to restore adult neurogenesis in the ventral dentate gyrus (DG), by both increasing neuronal differentiation and restoring the normal morphology of newborn dendrites, in mice with spared nerve injury surgery. By ablating the Nestin+ neural stem cells (NSCs) via diphtheria toxin fragment A expression, we further proved that neurogenesis in the ventral DG was crucial to the long-term, but not the immediate antidepressant effect of EA, nor was it associated with nociception. Furthermore, we found that the restoration of neurogenesis was dependent on Tet1-mediated epigenetic modification upon EA treatment. Tet1 could bind to the promoter of the Prox1 gene, thus catalyzing its demethylation and facilitating its expression, which finally contributed to the restoration of neurogenesis and amelioration of depression-like behaviors induced by chronic neuropathic pain. Thus, we conclude that EA stimulation restores inhibited Tet1 expression in hippocampal NSCs of mice with chronic neuropathic pain, and increased Tet1 expression ameliorates hypermethylation of Prox1 and restores normal adult neurogenesis in the ventral DG, which contributes to the long-term antidepressant effect of EA.


Asunto(s)
Electroacupuntura , Neuralgia , Ratones , Animales , Depresión/complicaciones , Depresión/terapia , Neurogénesis , Hipocampo/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
15.
Behav Brain Res ; 438: 114211, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36368442

RESUMEN

Major depressive disorder is a complex psychiatric disorder with a high prevalence rate worldwide. Previous studies have demonstrated the involvement of the prelimbic cortex (PL) in mediating depressive-like behavior, however, the exact molecular mechanism taking place in the PL remains unclear. In the present study, we conducted high-throughput sequencing of mRNAs and miRNAs in PL tissue harvested from chronic social defeat stress (CSDS) susceptible male mice. We identified 59 differentially expressed mRNAs and 6 differentially expressed miRNAs, in which 40 mRNAs and 3 miRNAs were up-regulated, while 19 mRNAs and 3 miRNAs were down-regulated. Integrated analysis of miRNA-mRNA networks suggested that GPR35 signaling might be involved in CSDS-induced depressive-like behaviors. RT-PCR and western blot assays validated that Abra, Sell and GPR35 were up-regulated. Functionally, inhibition of GPR35 in the PL ameliorated CSDS-induced depressive-like behaviors. Thus, the present study provided a global view of mRNA and miRNA profiles in the PL of male stress susceptible mice, and suggested that GPR35 signaling was associated with CSDS-induced depressive-like behaviors. These results may be valuable for further investigations of the molecular regulatory mechanisms in stress-induced depression.


Asunto(s)
Trastorno Depresivo Mayor , MicroARNs , Ratones , Masculino , Animales , Derrota Social , Depresión/metabolismo , Estrés Psicológico/metabolismo , ARN Mensajero , MicroARNs/genética , Susceptibilidad a Enfermedades , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G
16.
Acta Pharmacol Sin ; 44(3): 538-545, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36127507

RESUMEN

Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 µg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.


Asunto(s)
Dinorfinas , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Dinorfinas/metabolismo , Receptores Opioides kappa , Morfina , Analgésicos Opioides/farmacología , Regulación hacia Arriba , Antagonistas de Narcóticos/farmacología , Hipocampo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Neurochem Res ; 48(5): 1531-1542, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36525124

RESUMEN

Our previous study found that activation of adenosine A1 receptor (A1R) induced phosphorylation of delta opioid receptor (DOR) and desensitization of its downstream signaling molecules, cAMP and Akt. To further investigate the effect of A1R agonist on DOR signaling and the underlying mechanism, we examined the effect of A1R activation upon binding of its agonist N6-cyclohexyl-adenosine (CHA) on DOR-mediated Raf-1/MEK/ERK activation, and found that prolonged CHA exposure resulted in downregulation of DOR-mediated Raf-1/MEK/ERK signaling pathway. CHA-treatment time dependently attenuated Raf-1-Ser338 phosphorylation induced by [D-Pen2,5] enkephalin (DPDPE), a specific agonist of DOR, and further caused downregulation of the Raf-1/MEK/ERK signaling pathway activated by DOR agonist. Moreover, CHA exposure time-dependently induced the phosphorylation of Raf-1-Ser289/296/301, the inhibitory phosphorylation sites that were regulated by negative feedback, thereby inhibiting activation of the MEK/ERK pathway, and this effect could be blocked by MEK inhibitor U0126. Finally, we proved that the heterologous desensitization of the Raf-1/MEK/ERK cascade was essential in the regulation of anti-nociceptive effect of DOR agonists by confirming that such effect was inhibited by pretreatment of CHA. Therefore, we conclude that the activation of A1R inhibits DOR-mediated MAPK signaling pathway via heterologous desensitization of the Raf-1/MEK/ERK cascade, which is a result of ERK-mediated Raf-1-Ser289/296/301 phosphorylation mediated by activation of A1R.


Asunto(s)
Receptor de Adenosina A1 , Receptores Opioides delta , Fosforilación , Receptor de Adenosina A1/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacología , Retroalimentación , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
18.
Nat Commun ; 13(1): 7136, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414629

RESUMEN

Epileptic seizures are widely regarded to occur as a result of the excitation-inhibition imbalance from a neuro-centric view. Although astrocyte-neuron interactions are increasingly recognized in seizure, elementary questions about the causal role of astrocytes in seizure remain unanswered. Here we show that optogenetic activation of channelrhodopsin-2-expressing astrocytes effectively attenuates neocortical seizures in rodent models. This anti-seizure effect is independent from classical calcium signaling, and instead related to astrocytic Na+-K+-ATPase-mediated buffering K+, which activity-dependently inhibits firing in highly active pyramidal neurons during seizure. Compared with inhibition of pyramidal neurons, astrocyte stimulation exhibits anti-seizure effects with several advantages, including a wider therapeutic window, large-space efficacy, and minimal side effects. Finally, optogenetic-driven astrocytic Na+-K+-ATPase shows promising therapeutic effects in a chronic focal cortical dysplasia epilepsy model. Together, we uncover a promising anti-seizure strategy with optogenetic control of astrocytic Na+-K+-ATPase activity, providing alternative ideas and a potential target for the treatment of intractable epilepsy.


Asunto(s)
Astrocitos , Neocórtex , Animales , Adenosina Trifosfatasas , Roedores , Iones
19.
J Med Chem ; 65(15): 10377-10392, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35900351

RESUMEN

Undue central nervous system (CNS) side effects including dysphoria and sedation remain to be a challenge for the development of κ opioid receptor (KOR) agonists as effective and safe analgesics. On the basis of our previous work on morphinan-based KOR agonists, a series of 7α-methyl-7ß-substituted northebaine derivatives were designed, synthesized, and biologically assayed. Among others, compound 4a (SLL-627) has been identified as a highly selective and potent KOR agonist both in vitro and in vivo, and its molecular basis was also examined and discussed. Besides low liability to conditioned place aversion (CPA) test, treatment of SLL-627 was associated with a nonreduction in locomotor activity, compared to most of the other arylacetamide- or morphinan-based KOR agonists which generally exhibited apparently sedative effects. This unexpected finding provides new insights to dissociate analgesia from sedation for future discovery of innovative KOR agonists.


Asunto(s)
Morfinanos , Receptores Opioides kappa , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Locomoción , Morfinanos/farmacología , Receptores Opioides kappa/agonistas
20.
Mol Neurobiol ; 59(9): 5299-5311, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35696012

RESUMEN

Chronic pain, such as neuropathic pain, causes anxiety and other negative emotions, which aggravates the pain sensation and increases the risk of chronic pain over time. Dopamine receptor D1 (DRD1) and dopamine receptor D2 (DRD2) in the basolateral amygdala (BLA) have been implicated in mediating anxiety-related behaviors, but their potential roles in the BLA in neuropathic pain-induced anxiety have not been examined. Electroacupuncture (EA) is commonly used to treat chronic pain and emotional disorders, but it is still unclear whether EA plays a role in analgesia and anxiety relief through DRD1 and DRD2 in the BLA. Here, we used western blotting to examine the expression of DRD1 and DRD2 and pharmacological regulation combined with behavioral testing to detect anxiety-like behaviors. We observed that injection of the DRD1 antagonist SCH23390 or the DRD2 agonist quinpirole into the BLA contributed to anxiety-like behaviors in naive mice. EA also activated DRD1 or inhibited DRD2 in the BLA to alleviate anxiety-like behaviors. To further demonstrate the role of DRD1 and DRD2 in the BLA in spared nerve injury (SNI) model-induced anxiety-like behaviors, we injected the DRD1 agonist SKF38393 or the DRD2 antagonist sulpiride into the BLA. We found that both activation of DRD1 and inhibition of DRD2 could alleviate SNI-induced anxiety-like behaviors, and EA had a similar effect of alleviating anxiety. Additionally, neither DRD1 nor DRD2 in the BLA affected SNI-induced mechanical allodynia, but EA did. Overall, our work provides new insights into the mechanisms of neuropathic pain-induced anxiety and a possible explanation for the effect of EA treatment on anxiety caused by chronic pain.


Asunto(s)
Complejo Nuclear Basolateral , Dolor Crónico , Electroacupuntura , Neuralgia , Animales , Ansiedad/complicaciones , Ansiedad/terapia , Complejo Nuclear Basolateral/metabolismo , Dolor Crónico/terapia , Ratones , Neuralgia/metabolismo , Neuralgia/terapia , Receptores de Dopamina D1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA