Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 7691-7708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099791

RESUMEN

Gene therapy aims to add, replace or turn off genes to help treat disease. To date, the US Food and Drug Administration (FDA) has approved 14 gene therapy products. With the increasing interest in gene therapy, feasible gene delivery vectors are necessary for inserting new genes into cells. There are different kinds of gene delivery vectors including viral vectors like lentivirus, adenovirus, retrovirus, adeno-associated virus et al, and non-viral vectors like naked DNA, lipid vectors, polymer nanoparticles, exosomes et al, with viruses being the most commonly used. Among them, the most concerned vector is adeno-associated virus (AAV) because of its safety, natural ability to efficiently deliver gene into cells and sustained transgene expression in multiple tissues. In addition, the AAV genome can be engineered to generate recombinant AAV (rAAV) containing transgene sequences of interest and has been proven to be a safe gene vector. Recently, rAAV vectors have been approved for the treatment of various rare diseases. Despite these approvals, some major limitations of rAAV remain, namely nonspecific tissue targeting and host immune response. Additional problems include neutralizing antibodies that block transgene delivery, a finite transgene packaging capacity, high viral titer used for per dose and high cost. To deal with these challenges, several techniques have been developed. Based on differences in engineering methods, this review proposes three strategies: gene engineering-based capsid modification (capsid modification), capsid surface tethering through chemical conjugation (surface tethering), and other formulations loaded with AAV (virus load). In addition, the major advantages and limitations encountered in rAAV engineering strategies are summarized.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Transgenes , Dependovirus/genética , Humanos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Terapia Genética/métodos , Evasión Inmune , Animales , Ingeniería Genética/métodos , Técnicas de Transferencia de Gen , Tropismo Viral
2.
Nat Commun ; 15(1): 5747, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982069

RESUMEN

Friction as a fundamental physical phenomenon dominates nature and human civilization, among which the achievement of molecular rolling lubrication is desired to bring another breakthrough, like the macroscale design of wheel. Herein, an edge self-curling nanodeformation phenomenon of graphite nanosheets (GNSs) at cryogenic temperature is found, which is then used to promote the formation of graphite nanorollers in friction process towards molecular rolling lubrication. The observation of parallel nanorollers at the friction interface give the experimental evidence for the occurrence of molecular rolling lubrication, and the graphite exhibits abnormal lubrication performance in vacuum with ultra-low friction and wear at macroscale. The molecular rolling lubrication mechanism is elucidated from the electronic interaction perspective. Experiments and theoretical simulations indicate that the driving force of the self-curling is the uneven atomic shrinkage induced stress, and then the shear force promotes the intact nanoroller formation, while the constraint of atomic vibration decreases the dissipation of driving stress and favors the nanoroller formation therein. It will open up a new pathway for controlling friction at microscale and nanostructural manipulation.

3.
J Control Release ; 372: 531-550, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851535

RESUMEN

Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.


Asunto(s)
Plaquetas , Lesiones Traumáticas del Encéfalo , Exosomas , Neuronas , Especies Reactivas de Oxígeno , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plaquetas/metabolismo , Masculino , Exosomas/metabolismo , Ratones , Péptidos/administración & dosificación , Péptidos/química , Ratones Endogámicos C57BL , Materiales Biomiméticos/administración & dosificación , Materiales Biomiméticos/química , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Sistemas de Liberación de Medicamentos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Biomimética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA