Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(20): 13384-13396, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38736184

RESUMEN

Silicon (Si) stands out as a promising high-capacity anode material for high-energy Li-ion batteries. However, a drastic volume change of Si during cycling leads to the electrode structure collapse and interfacial stability degradation. Herein, a multifunctional quasisolid gel polymer electrolyte (QSGPE) is designed, which is synthesized through the in situ polymerization of methylene bis(acrylamide) with silica-nanoresin composed of nanosilica and a trifunctional cross-linker in cells, leading to the creation of a "breathing" three-dimensional elastic Li-ion conducting framework that seamlessly integrates an electrode, a binder, and an electrolyte. The silicon particles within the anode are encapsulated by buffering the QSGPE after cross-linking polymerization, which synergistically interacts with the existing PAA binder to reinforce the electrode structure and stabilize the interface. In addition, the formation of the LiF- and Li3N-rich SEI layer further improves the interfacial property. The QSGPE demonstrates a wide electrochemical window until 5.5 V, good flame retardancy, high ionic conductivity (1.13 × 10-3 S cm-1), and a Li+ transference number of 0.649. The advanced QSGPE and cell design endow both nano- and submicrosized silicon (smSi) anodes with high initial Coulombic efficiencies over 88.0% and impressive cycling stability up to 600 cycles at 1 A g-1. Furthermore, the NCM811//Si cell achieves capacity retention of ca. 82% after 100 cycles at 0.5 A g-1. This work provides an effective strategy for extending the cycling life of the Si anode and constructing an integrated cell structure by in situ polymerization of the quasisolid gel polymer electrolyte.

2.
Angew Chem Int Ed Engl ; 63(23): e202317923, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38536212

RESUMEN

Lithium metal battery has been regarded as promising next-generation battery system aiming for higher energy density. However, the lithium metal anode suffers severe side-reaction and dendrite issues. Its electrochemical performance is significantly dependant on the electrolyte components and solvation structure. Herein, a series of fluorinated ethers are synthesized with weak-solvation ability owing to the duple steric effect derived from the designed longer carbon chain and methine group. The electrolyte solvation structure rich in AGGs (97.96 %) enables remarkable CE of 99.71 % (25 °C) as well as high CE of 98.56 % even at -20 °C. Moreover, the lithium-sulfur battery exhibits excellent performance in a wide temperature range (-20 to 50 °C) ascribed to the modified interphase rich in LiF/LiO2. Furthermore, the pouch cell delivers superior energy density of 344.4 Wh kg-1 and maintains 80 % capacity retention after 50 cycles. The novel solvent design via molecule chemistry provides alternative strategy to adjust solvation structure and thus favors high-energy density lithium metal batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA