Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805184

RESUMEN

Staphylococcus aureus (S. aureus) persists within mammary epithelial cells for an extended duration, exploiting the host metabolic resources to facilitate replication. This study revealed a mechanism by which intracellular S. aureus reprograms host metabolism, with PFKFB3 playing a crucial role in this process. Mechanistically, S. aureus induced mitochondrial damage, leading to increased levels of mitochondrial reactive oxygen species (mROS) and dysfunction in electron transport chain (ETC). Moreover, S. aureus shifted the balance of mitochondrial dynamics from fusion to fission, subsequently activating PINK1-PRKN-dependent mitophagy, causing loss of the sirtuin 3 (SIRT3) to stabilize hypoxic inducible factor 1α (HIF1α), and shifting the host metabolism toward enhanced glycolysis. The inhibition of PFKFB3 reversed the mitochondrial damage and degradation of SIRT3 induced by S. aureus. Overall, our findings elucidate the mechanism by which S. aureus reprograms host metabolism and offer insights into the treatment of S. aureus infection.

3.
Front Immunol ; 11: 581517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414782

RESUMEN

Objectives: The underlying mechanism of the inflammatory response against Brucellosis caused by Brucella remains poorly understood. This study aimed to determine the role of long non-coding RNAs (lncRNAs) in regulating of inflammatory and anti-Brucella responses. Materials and methods: Microarray analysis was performed to detect differentially expressed lncRNAs in THP-1 cells infected with an S2308 Brucella strain. The candidate lncRNAs were screened using bioinformatic analysis and siRNAs; bioinformatic prediction and luciferase reporter assay were also conducted, while inflammatory responses was assessed using RT-qPCR, western blot, immunofluorescence, ELISA, HE, and immunohistochemistry. Results: The lncRNA Gm28309 was identified to be involved in regulating inflammation induced by Brucella. Gm28309, localized in the cytoplasm, was down-expressed in RAW264.7 cells infected with S2308. Overexpression of Gm28309 or inhibition of miR-3068-5p repressed p65 phosphorylation and reduced NLRP3 inflammasome and IL-1ß and IL-18 secretion. Mechanistically, Gm28309 acted as a ceRNA of miR-3068-5p to activate NF-κB pathway by targeting κB-Ras2, an inhibitor of NF-κB signaling. Moreover, the number of intracellular Brucella was higher when Gm28309 was overexpressed or when miR-3068-5p or p65 was inhibited. However, these effects were reversed by the miR-3068-5p mimic. Conclusions: Our study demonstrates, for the first time, that LncRNAs are involved in regulating immune responses during Brucella infection, and Gm28309, an lncRNA, plays a crucial role in activating NF-κB/NLRP3 inflammasome signaling pathway.


Asunto(s)
Brucella/inmunología , Regulación hacia Abajo/inmunología , Inflamación/inmunología , Macrófagos/inmunología , MicroARNs/inmunología , FN-kappa B/inmunología , ARN Largo no Codificante/inmunología , Animales , Línea Celular , Femenino , Humanos , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Transducción de Señal/inmunología , Células THP-1
4.
Mol Med Rep ; 19(3): 2323-2329, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30664205

RESUMEN

The Capripoxvirus (CaPV) has a large double­stranded DNA genome and a restricted host­range. At present, it is being investigated as an ideal vaccine vector. In the present study, a novel recombinant goat pox virus (rGTPV) was constructed to express Brucella outer membrane protein (OMP)25, and was validated by in vitro and in vivo immunization assays. A novel rGTPV vector was created, in which the thymidine kinase gene was used as a flanking sequence, I1L was inserted as a promoter element to enhance Brucella OMP25 expression, and p7.5 as another promoter element was used to regulate guanine phosphoribosyl­transferase as a selection maker. The rGTPV vector was transfected into sheep fetal fibroblast/lamb testis cells pre­infected with GTPV G14­STV44­55 to recombine. Brucella OMP25 protein was expressed in cells by rGTPV, and activated immune reactivity to Brucella OMP25 protein, as detected by western blotting. Furthermore, rGTPV elicited, anti­Brucella­specific immunoglobulin G responses, as determined by ELISA. Mice vaccinated with rGTPV did not exhibit pathology alterations in the kidney and liver. These results suggested that the novel rGTPV was able to efficiently drive Brucella OMP25 protein expression and activate immune reactivity, and may have applications in CaPV live vector vaccines and associated research.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Vacuna contra la Brucelosis/genética , Brucella/genética , Capripoxvirus/genética , Animales , Brucella/patogenicidad , Brucella/virología , Vacuna contra la Brucelosis/inmunología , Ensayo de Inmunoadsorción Enzimática , Regulación Viral de la Expresión Génica , Vectores Genéticos , Humanos , Inmunización , Ratones , Regiones Promotoras Genéticas , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
5.
Front Vet Sci ; 4: 197, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326948

RESUMEN

Outer membrane protein 25 (OMP25), a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK) signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308) and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10) were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK), and Jun-N-terminal kinase (JNK) from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

6.
PLoS One ; 11(12): e0167486, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907115

RESUMEN

Brucellosis is a highly contagious zoonosis caused by Brucella. Brucella can invade and persist inside host cells, which results in chronic infection. We constructed AIR interference and overexpression lentiviruses to acquire AIR interference, overexpression, and rescue stable expression cell lines. We also established a Brucella melitensis 16M-infected macrophage model, which was treated with either the vehicle control or NAC (ROS scavenger N-acetylcysteine (NAC) for 0, 3, 6, 12, and 24 h. Confocal laser microscopy, transmission electron microscopy, fluorescence quantitative PCR, flow cytometry, ELISA, and Western blot were used to detect inflammation, cell autophagy and apoptosis-related protein expression levels, ROS levels, and the distribution of mitochondria. It was found that after interference and overexpression of AIR, ROS release was significantly changed, and mitochondria became abnormally aggregated. B. melitensis 16M activated the NLRP3/AIM2 inflammatory complex, and induced RAW264.7 cells to secrete IL-1ß and IL-18 through the ROS pathway. B. melitensis 16M also altered autophagy-related gene expression, increased autophagy activity, and induced cell apoptosis through the ROS pathway. The results showed that after B. melitensis 16M infection, ROS induced apoptosis, inflammation, and autophagy while AIR inhibited autophagosome maturation and autophagy initiation. Autophagy negatively regulated the activation of inflammasomes and prevented inflammation from occurring. In addition, mitophagy could promote cell apoptosis.


Asunto(s)
Apoptosis , Autofagia , Brucella melitensis/fisiología , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Biomarcadores , Brucelosis/genética , Brucelosis/metabolismo , Brucelosis/microbiología , Línea Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Mediadores de Inflamación/química , Macrófagos/inmunología , Ratones , Mitocondrias/metabolismo , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA