Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383405

RESUMEN

Soybean is an important plant source of protein worldwide. Increasing demands for soybean can be met by improving the quality of its seed protein. In this study, GmCG-1, which encodes the ß-conglycinin α' subunit, was identified via combined genome-wide association study and transcriptome analysis. We subsequently knocked down GmCG-1 and its paralogues GmCG-2 and GmCG-3 with CRISPR-Cas9 technology and generated two stable multigene knockdown mutants. As a result, the ß-conglycinin content decreased, whereas the 11S/7S ratio, total protein content and sulfur-containing amino acid content significantly increased. Surprisingly, the globulin mutant exhibited salt tolerance in both the germination and seedling stages. Little is known about the relationship between seed protein composition and the salt stress response in soybean. Metabonomics and RNA-seq analysis indicated that compared with the WT, the mutant was formed through a pathway that was more similar to that of active salicylic acid biosynthesis; however, the synthesis of cytokinin exhibited greater defects, which could lead to increased expression of plant dehydrin-related salt tolerance proteins and cell membrane ion transporters. Population evolution analysis suggested that GmCG-1, GmCG-2, and GmCG-3 were selected during soybean domestication. The soybean accessions harboring GmCG-1Hap1 presented relatively high 11S/7S ratios and relatively high salt tolerance. In conclusion, knockdown of the ß-conglycinin α and α' subunits can improve the nutritional quality of soybean seeds and increase the salt tolerance of soybean plants, providing a strategy for designing soybean varieties with high nutritional value and high salt tolerance.

2.
Front Public Health ; 12: 1442728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224554

RESUMEN

Background: China exited strict Zero-COVID policy with a surge in Omicron variant infections in December 2022. Given China's pandemic policy and population immunity, employing Baidu Index (BDI) to analyze the evolving disease landscape and estimate the nationwide pneumonia hospitalizations in the post Zero COVID period, validated by hospital data, holds informative potential for future outbreaks. Methods: Retrospective observational analyses were conducted at the conclusion of the Zero-COVID policy, integrating internet search data alongside offline records. Methodologies employed were multidimensional, encompassing lagged Spearman correlation analysis, growth rate assessments, independent sample T-tests, Granger causality examinations, and Bayesian structural time series (BSTS) models for comprehensive data scrutiny. Results: Various diseases exhibited a notable upsurge in the BDI after the policy change, consistent with the broader trajectory of the COVID-19 pandemic. Robust connections emerged between COVID-19 and diverse health conditions, predominantly impacting the respiratory, circulatory, ophthalmological, and neurological domains. Notably, 34 diseases displayed a relatively high correlation (r > 0.5) with COVID-19. Among these, 12 exhibited a growth rate exceeding 50% post-policy transition, with myocarditis escalating by 1,708% and pneumonia by 1,332%. In these 34 diseases, causal relationships have been confirmed for 23 of them, while 28 garnered validation from hospital-based evidence. Notably, 19 diseases obtained concurrent validation from both Granger causality and hospital-based data. Finally, the BSTS models approximated approximately 4,332,655 inpatients diagnosed with pneumonia nationwide during the 2 months subsequent to the policy relaxation. Conclusion: This investigation elucidated substantial associations between COVID-19 and respiratory, circulatory, ophthalmological, and neurological disorders. The outcomes from comprehensive multi-dimensional cross-over studies notably augmented the robustness of our comprehension of COVID-19's disease spectrum, advocating for the prospective utility of internet-derived data. Our research highlights the potential of Internet behavior in predicting pandemic-related syndromes, emphasizing its importance for public health strategies, resource allocation, and preparedness for future outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , China/epidemiología , Estudios Retrospectivos , Hospitalización/estadística & datos numéricos , Teorema de Bayes , Política de Salud , Pandemias
3.
Biomaterials ; 314: 122829, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276410

RESUMEN

Developing drug delivery systems capable of achieving deep tumor penetration is a challenging task, yet there is a significant demand for such systems in cancer treatment. Hitchhiking on tumor-derived extracellular vesicles (EVs) represents a promising strategy for enhancing drug penetration into tumors. However, the limited drug assembly on EVs restricts its further application. Here, we present a novel approach to efficiently attach antitumor drugs to EVs using an engineered cell membrane-based vector. This vector includes the AS1411 aptamer for tumor-specific targeting, the vesicular stomatitis virus glycoprotein (VSV-G) for tumor cell membrane fusion, and a photosensitizer as the therapeutic agent while ensuring optimal drug encapsulation and stability. Upon injection, photosensitizers are firstly transferred to the tumor cell membrane and subsequently piggybacked onto EVs with the inherent secretion process. By hitchhiking with EVs, photosensitizers can be transferred layer by layer deep into the solid tumors. The results suggest that this EVs-hitchhiking strategy enables photosensitizers to penetrate deeply into tumor tissue, thereby enhancing the efficacy of phototherapy. This study offers broad application prospects for delivering drugs deeply into tumor tissues.

4.
J Sci Food Agric ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311036

RESUMEN

BACKGROUND: As a novel type of extracellular polysaccharide produced by Sphingomonas sp., welan gum has been widely applied in various fields because of its excellent properties. The study has improved the fermentation process. RESULTS: The initial sucrose concentration, temperature and stirring speed were set to 20 g L-1, 33 °C and 400 rpm, respectively, and 13.3 g L-1 sucrose was added at 24, 40 and 56 h. The temperature and stirring speed were then set at 28 °C and 600 rpm from 24 to 48 h and 28 °C and 600 rpm from 48 to 72 h, respectively. As a result, welan gum production, dry cell weight, sucrose conversion rate and viscosity were correspondingly increased to 38.60 g L-1, 5.47 g L-1, 0.64 g g-1 and 3779 mPa·s, respectively. In addition, the mechanism by which fermentation strategy promotes welan gum synthesis was investigated by transcriptome analysis. CONCLUSION: Improving respiration and ATP supply, reducing unnecessary protein synthesis, and alleviating competition between cell growth and welan gum synthesis contribute to promoting the fermentation performance of Sphingomonas sp., thus providing a practical strategy for efficient welan gum production. © 2024 Society of Chemical Industry.

5.
Nature ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39142338

RESUMEN

Females exhibit complex, dynamic behaviours during mating with variable sexual receptivity depending on hormonal status1-4. However, how their brains encode the dynamics of mating and receptivity remains largely unknown. The ventromedial hypothalamus, ventrolateral subdivision contains oestrogen receptor type 1-positive neurons that control mating receptivity in female mice5,6. Here, unsupervised dynamical system analysis of calcium imaging data from these neurons during mating uncovered a dimension with slow ramping activity, generating a line attractor in neural state space. Neural perturbations in behaving females demonstrated relaxation of population activity back into the attractor. During mating, population activity integrated male cues to ramp up along this attractor, peaking just before ejaculation. Activity in the attractor dimension was positively correlated with the degree of receptivity. Longitudinal imaging revealed that attractor dynamics appear and disappear across the oestrus cycle and are hormone dependent. These observations suggest that a hypothalamic line attractor encodes a persistent, escalating state of female sexual arousal or drive during mating. They also demonstrate that attractors can be reversibly modulated by hormonal status, on a timescale of days.

6.
Front Microbiol ; 15: 1434987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091297

RESUMEN

Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.

7.
Sci Rep ; 14(1): 18106, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103427

RESUMEN

Hypothalamus is a crucial deep brain area that is responsible for the integration and coordination of various brain functions. The altered perfusion of hypothalamus during headache caused by medication-overuse headache (MOH) was previously unknown. In the current study, the altered perfusion of hypothalamic subregions in MOH patients was investigated using state-of-the-art 3D pseudo-continuous arterial spin labeling (PCASL) MR imaging. In this study, 29 normal controls subjects (NCs) and 29 MOH patients underwent 3D PCASL and brain structural MR imaging. The hypothalamus was automatically segmented into 10 subunits and the volume of each subunit was automatically determined using Freesurfer software (v7.4.1). All segmented hypothalamic subunits were converted to individual hypothalamic subunit masks. The cerebral blood flow (CBF) images were coregistered with the raw brain structural images and resliced. The CBF value of each hypothalamic subunit was extracted from the warped CBF images. The volume and CBF value of each hypothalamic subunit were analyzed using the independent sample T test and Mann-Whitney U test, receiver operating characteristic (ROC) curve analysis, and Pearson and Spearman correlation analysis. Hypothalamic subunits with significantly decreased perfusion were located in the left posterior, left tubular superior, right anterior-inferior, right tubular inferior, right tubular superior, right posterior subunit and the entire right hypothalamus [CBF value for MOH vs NC (mL/100 g·min): 48.41 ± 6.75 vs 54.08 ± 11.47, 44.44 ± 4.79 vs 48.11 ± 7.73, 41.49 (32.90, 61.46) vs 49.38 ± 10.47, 46.62 ± 7.04 vs 53.90 ± 11.75, 42.12 ± 5.74 vs 47.02 ± 9.99, 42.79 ± 5.15 vs 47.93 ± 10.48 and 43.58 ± 5.06 vs 48.65 ± 9.33, respectively] in MOH compared to NC (P < 0.05). ROC analysis for these positive subunits revealed that area under the curve was 0.658-0.693, and ROC curve for left posterior subunit had the highest specificity of 93.10% while the entire right hypothalamus had the highest sensitivity of 72.41%. Further correlation analysis showed that the CBF value of the left posterior, right anterior-inferior, right tubular superior, whole right hypothalamus presented significantly negative correlation with Hamilton Depression Scale (HAMD) score (P < 0.05). Hypoperfusion of hypothalamic subunits may contribute to the understanding of MOH pathogenesis, and the 3D PCASL could be considered as a potential diagnostic and assessment tool for MOH.


Asunto(s)
Circulación Cerebrovascular , Hipotálamo , Imagen por Resonancia Magnética , Humanos , Hipotálamo/diagnóstico por imagen , Hipotálamo/metabolismo , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Persona de Mediana Edad , Cefaleas Secundarias/diagnóstico por imagen , Cefaleas Secundarias/fisiopatología , Imagenología Tridimensional , Marcadores de Spin , Estudios de Casos y Controles , Curva ROC
8.
J Am Chem Soc ; 146(32): 22675-22688, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088029

RESUMEN

Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates. Therefore, designing chemical linkages that ensure both stable assembly and rapid drug release remains challenging. To address this paradox of stable assembly and rapid drug release in RHPNs, we developed carbon-spaced double-disulfide bond (CSDD)-bridged RHPNs (CSDD-RHPNs) with two carbon-spaces. Pilot studies showed that CSDD-RHPNs with two carbon-spaces exhibited enhanced assembly stability, reduction-responsive drug release, and improved selective toxicity compared to α-/γ-position single disulfide bond bridged RHPNs. Based on these findings, CSDD-RHPNs with four and six carbon-spaces were designed to further investigate the properties of CSDD-RHPNs. These CSDD-RHPNs exhibited excellent assembly ability, safety, and prolonged circulation. Particularly, CSDD-RHPNs with two carbon-spaces displayed the best antitumor efficacy on 4T1 and B16-F10 tumor-bearing mice. CSDD chemical linkages offer novel perspectives on the rational design of RHPNs, potentially overcoming the design limitations regarding contradictory assembly ability and drug release rate.


Asunto(s)
Carbono , Disulfuros , Profármacos , Disulfuros/química , Profármacos/química , Animales , Ratones , Carbono/química , Humanos , Liberación de Fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Línea Celular Tumoral , Nanoestructuras/química , Dimerización , Doxorrubicina/química , Doxorrubicina/farmacología
9.
Adv Mater ; 36(35): e2408287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38967293

RESUMEN

Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.

10.
Heliyon ; 10(13): e33611, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027598

RESUMEN

Background: Severe fever with thrombocytopenia syndrome (SFTS) is spreading rapidly in Asia. The pathway of SFTS virus shedding from patient and specific use of personal protective equipments (PPEs) against viral transmission have rarely been reported. The study was to determine SFTS virus (SFTSV) shedding pattern from the respiratory, digestive and urinary tract to outside in patients. Methods: Patients were divided into mild and severe groups in three sentinel hospitals for SFTS in Anhui province from April 2020 to October 2022. SFTSV level from blood, throat swabs, fecal/anal swabs, urine and bedside environment swabs of SFTS patients were detected by qRT-PCR. Specific PPEs were applied in healthcare workers contacting with the patients who had oropharyngeal virus shedding and hemorrhagic signs. Results: A total of 189 SFTSV-confirmed patients were included in the study, 54 patients died (case fatality rate, 28.57 %). Positive SFTSV in throat swabs (T-SFTSV), fecal/anal swabs (F-SFTSV) and urine (U-SFTSV) were detected in 121 (64.02 %), 91 (48.15 %) and 65 (34.4 %) severely ill patients, respectively. The levels of T-SFTSV, F-SFTSV and U-SFTSV were positively correlated with the load of SFTSV in blood. We firstly revealed that SFTSV positive rate of throat swabs were correlated with occurrence of pneumonia and case fatality rate of patients (P < 0.0001). Specific precaution measures were applied by healthcare workers in participating cardiopulmonary resuscitation and orotracheal intubation for severely ill patients with positive T-SFTSV, no event of SFTSV human-to-human transmission occurred after application of effective PPEs. Conclusions: Our research demonstrated SFTSV could shed out from blood, oropharynx, feces and urine in severely ill patients. The excretion of SFTSV from these parts was positively correlated with viral load in the blood. Effective prevention measures against SFTSV human-to-human transmission are needed.

11.
Reprod Domest Anim ; 59(7): e14689, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044628

RESUMEN

Sheep are important herbivorous domestic animal globally, and the Chinese indigenous sheep breed has a multitude of economically significant variations due to the diverse geographical and ecological conditions. In particular, certain native breeds exhibit a visible high litter size phenotype due to the selection pressure of natural and artificial for thousands of years, offering an ideal animal model for investigating sheep's fecundity. In this study, selective signal analysis was performed on public whole-genome sequencing data from 60 sheep across eight breeds to identify candidate genes related to litter size. Results revealed that a total of 34,065,017 single-nucleotide polymorphisms (SNPs) were identified from all sheep, and 65 candidate genes (CDGs) were pinpointed from the top 1% of interacted windows and SNPs between the pairwise fixation index (FST, >0.149543) and cross-population extended haplotype homozygosity (XP-EHH, >0.701551). A total of 41 CDGs (e.g. VRTN, EYA2 and MCPH1) were annotated to 576 GO terms, of which seven terms were directly linked to follicular and embryonic development (e.g. TBXT, BMPR1B, and BMP2). In addition, 73 KEGG pathways were enriched by 21 CDGs (e.g. ENTPD5, ABCD4 and RXFP2), mainly related to Hippo (TCF4, BMPR1B and BMP2), TGF-ß (BMPR1B and BMP2), PI3K-Akt (ITGB4, IL4R and PPP2R5A) and Jak-STAT signalling pathways (IL20RA and IL4R). Notably, a series of CDGs was under strong selection in sheep with high litter size traits. These findings result could improve the comprehension of the genetic underpinnings of sheep litter size. Furthermore, it provides valuable CDGS for future molecular breeding.


Asunto(s)
Tamaño de la Camada , Polimorfismo de Nucleótido Simple , Oveja Doméstica , Animales , Tamaño de la Camada/genética , Oveja Doméstica/genética , Femenino , Cruzamiento , Estudio de Asociación del Genoma Completo , Herencia , Selección Genética , Secuenciación Completa del Genoma/veterinaria , Ovinos/genética
12.
ACS Biomater Sci Eng ; 10(8): 4970-4984, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022808

RESUMEN

Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI. However, such NPs would be affected by the glomerular filtration barrier (GFB). Typically, NPs are too large to penetrate the glomerular system and reach the renal tubules─the primary site of AKI injury. Herein, we report the development of ultrasmall carbon dots-gallic acid (CDs-GA) NPs (∼5 nm). These NPs exhibited outstanding biocompatibility and were shown not only to efficiently eliminate ROS and alleviate oxidative stress but also to suppress the activation of the NF-κB signaling pathway, leading to a reduction in the release of inflammatory factors. Importantly, CDs-GA NPs were shown to be able to rapidly accumulate rapidly in the renal tissues without the need for intricate targeting strategies. In vivo studies demonstrated that CDs-GA NPs significantly reduced the incidence of cisplatin (CDDP)-induced AKI in mice, surpassing the efficacy of the small molecular drug, N-acetylcysteine. This research provides an innovative strategy for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Carbono , Cisplatino , Especies Reactivas de Oxígeno , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Carbono/química , Carbono/uso terapéutico , Ratones , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/uso terapéutico , Cisplatino/farmacología , Ácido Gálico/farmacología , Ácido Gálico/química , Ácido Gálico/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Nanopartículas/uso terapéutico , FN-kappa B/metabolismo , Masculino , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Puntos Cuánticos/toxicidad , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Transducción de Señal/efectos de los fármacos
13.
Mol Biotechnol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951482

RESUMEN

Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. CircABHD2 exhibits down-regulation in both endometrial cancer (EC) cells and tissues, but the biological roles and mechanisms of action in EC are still unclear. This study aims to provide a theoretical basis for the role of circABHD2 in EC and potential targets for individualized precision therapy. Dysregulated circRNAs were identified using RNA sequencing (RNA-Seq) from EC tissues and validated using RT-qPCR. CCK-8, colony formation assay, wound healing assay, transwell assay, cell cycle, and apoptosis assay were used to evaluate the effects of circABHD2 on EC cells. Metabolomics assay and western blot analyses were used to investigate the potential mechanisms of circABHD2. From sequencing of RNA (RNA-Seq) analysis of EC tissues, we obtained 19 dysregulated circRNAs, including 8 upregulated ones and 11 downregulated ones. Using RT-qPCR on 32 EC tissues and 19 normal endometrial tissues, we confirmed that circABHD2 was downregulated in EC tissues. The expression levels of circABHD2 were closely relevant to the International Federation of Gynecology and Obstetrics (FIGO) stage and differentiation degree of EC. Functional experiments demonstrated that overexpression of circABHD2 decreased proliferation, migration, invasion, and promoted cell apoptosis. Un-targeted metabolomic assay revealed 31 differential metabolites in EC cells overexpressing circABHD2. KEGG analysis of differential metabolites indicated that NAD+ is the core metabolite regulated by circABHD2. NAMPT is one key enzyme involved in the synthetic pathway responsible for NAD+. Subsequent experiments confirmed that by inhibiting NAMPT protein expression in EC cells, cirABHD2 can inhibit NAD+ level, suggesting that circABHD2 may inhibit EC by regulating the metabolic axis of NAD+/NAMPT. CircABHD2, a downregulated circRNA in EC cells and tissues, inhibits the malignant progression of EC via the NAD+/NAMPT metabolic axis. This discovery presents a promising diagnostic biomarker and potential therapeutic target for EC.

14.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972937

RESUMEN

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

15.
Small ; 20(40): e2402725, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837316

RESUMEN

Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.

16.
Nanomedicine ; 61: 102764, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38885751

RESUMEN

Glucose oxidase (GOx) is often used to starvation therapy. However, only consuming glucose cannot completely block the energy metabolism of tumor cells. Lactate can support tumor cell survival in the absence of glucose. Here, we constructed a nanoplatform (Met@HMnO2-GOx/HA) that can deplete glucose while inhibiting the compensatory use of lactate by cells to enhance the effect of tumor starvation therapy. GOx can catalyze glucose into gluconic acid and H2O2, and then HMnO2 catalyzes H2O2 into O2 to compensate for the oxygen consumed by GOx, allowing the reaction to proceed sustainably. Furthermore, metformin (Met) can inhibit the conversion of lactate to pyruvate in a redox-dependent manner and reduce the utilization of lactate by tumor cells. Met@HMnO2-GOx/HA nanoparticles maximize the efficacy of tumor starvation therapy by simultaneously inhibiting cellular utilization of two carbon sources. Therefore, this platform is expected to provide new strategies for tumor treatment.


Asunto(s)
Carbono , Glucosa Oxidasa , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Glucosa Oxidasa/metabolismo , Animales , Carbono/metabolismo , Carbono/química , Glucosa/metabolismo , Ratones , Nanopartículas/química , Línea Celular Tumoral , Metformina/farmacología , Metformina/uso terapéutico , Ácido Láctico/metabolismo , Peróxido de Hidrógeno/metabolismo
18.
Adv Sci (Weinh) ; 11(31): e2304687, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889331

RESUMEN

The microenvironment mediated by the microglia (MG) M1/M2 phenotypic switch plays a decisive role in the neuronal fate and cognitive function of Alzheimer's disease (AD). However, the impact of metabolic reprogramming on microglial polarization and its underlying mechanism remains elusive. This study reveals that cordycepin improved cognitive function and memory in APP/PS1 mice, as well as attenuated neuronal damage by triggering MG-M2 polarization and metabolic reprogramming characterized by increased OXPHOS and glycolysis, rather than directly protecting neurons. Simultaneously, cordycepin partially alleviates mitochondrial damage in microglia induced by inhibitors of OXPHOS and glycolysis, further promoting MG-M2 transformation and increasing neuronal survival. Through confirmation of cordycepin distribution in the microglial mitochondria via mitochondrial isolation followed by HPLC-MS/MS techniques, HKII and PDK2 are further identified as potential targets of cordycepin. By investigating the effects of HKII and PDK2 inhibitors, the mechanism through which cordycepin targeted HKII to elevate ECAR levels in the glycolysis pathway while targeting PDK2 to enhance OCR levels in PDH-mediated OXPHOS pathway, thereby inducing MG-M2 polarization, promoting neuronal survival and exerting an anti-AD role is elucidated.


Asunto(s)
Desoxiadenosinas , Modelos Animales de Enfermedad , Microglía , Mitocondrias , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Desoxiadenosinas/farmacología , Desoxiadenosinas/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Hexoquinasa/metabolismo , Hexoquinasa/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Glucólisis/efectos de los fármacos , Reprogramación Metabólica
19.
Adv Healthc Mater ; : e2401616, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895987

RESUMEN

Noninflammatory apoptosis is transformed into inflammatory pyroptosis by activating caspase-3 to lyse gasdermin E (GSDME), and this process can be used as an effective therapeutic strategy. Thus, a selective and powerful inducer of activated caspase-3 plays a vital role in pyroptosis-based cancer therapy. Herein, a human cell membrane vesicle-based nanoplatform (HCNP) is designed for photodynamic therapy (PDT). HCNP is modified with vesicular stomatitis virus G-protein (VSVG) to anchor nano-photosensitizers on the tumor cell membrane. Photosensitizers are bonded to HCNP by clicking chemical reaction as pyroptosis inducers. The results show that HCNP effectively disrupts the mitochondrial function of cells by generating reactive oxygen species (ROS) upon laser irradiation; concomitantly, GSDME is cleaved by activated caspase-3 and promotes pyroptosis of lung cancer cells. Here an effective intervention strategy is proposed to induce pyroptosis based on light-activated PDT.

20.
Front Vet Sci ; 11: 1406576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840635

RESUMEN

Introduction: Dehorning calves is necessary to minimize injury because intensive raising circumstances make horned cows more aggressive. However, acute pain is commonly perceived by farm animals when undergoing painful practices such as dehorning, affecting their health status and quality of life. By quantifying the magnitude of pain and discomfort associated with dehorning, we aim to contribute to a more humane and sustainable cattle farming industry. Methods: The objective of this study was to evaluate the behavioral, physiological, and emotional effects of acute dehorning pain in calves using two methods: dehorning cream and dehorning hot-iron.30 Holstein calves aged 4 days were selected for the study. These calves were randomly assigned to two experimental groups based on the method of disbudding: dehorning cream (n = 15) and hot-iron dehorning (n = 15). Before and after dehorning, we evaluated their physiological indicators of infrared eye temperature, concentrations of substance P, IL-6, cortisol, haptoglobin, as well as emotional state, and pain-related behavioral reactions. Results: Post-dehorning, the duration of lying down decreased significantly in both groups (DI and DC: 0-4 h) after dehorning (p < 0.05). Both groups exhibited increased frequencies of pain-related behaviors such as head shaking (DI: 1-7 h, DC: 1-6 h), ear flicking (DI: 2-7 h, DC: 2-7 h), head scratching (DI: 2-3 h, DC: 1-7 h), and top scuffing (DI: 2 h, DC: 2-7 h) compared to pre-dehorning (p < 0.05). The DC group demonstrated a higher frequency of head-shaking, ear-flicking, head-scratching, and top-rubbing behaviors, along with a longer duration of lying down (0-4 h), compared to the DI group (p < 0.05). Post-dehorning, play behavior reduced significantly in both groups (6-8 h) (p < 0.05), whereas judgment bias and fear levels showed no significant change (p > 0.05). Physiological measures including eye temperature, and blood levels of substance P and IL-6, did not differ significantly between the groups before and after dehorning (p > 0.05). However, 48 h after dehorning, calves in the DC group had significantly higher haptoglobin levels compared to the DI group (p = 0.015). Additionally, salivary cortisol levels in the DC group increased significantly at 3.5 h and 7 h post-dehorning (p = 0.018, p = 0.043). Discussion: Both hot-iron and cream dehorning induced pain in calves, as evidenced by increased pain-related behaviors, elevated salivary cortisol, and higher haptoglobin levels, alongside reduced positive behaviors. Notably, these effects were more pronounced in the DC group than in the DI group, suggesting that dehorning hot-iron may be a comparatively less stressful dehorning method for young calves. Moreover, the brief duration of pain response and weaker response to dehorning observed in 13-day-age calves in this study suggests that dehorning at younger ages may be more advisable and warrants further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA