Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Ultrasound ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39314204

RESUMEN

OBJECTIVE: To summarize the ultrasound characteristics, diagnostic experiences, and pregnancy outcomes of gravid uterine incarceration. METHODS: A retrospective analysis was conducted on the data of pregnant women diagnosed with gravid uterine incarceration by prenatal ultrasound at the Ultrasound Department of the Third Affiliated Hospital of Zhengzhou University from January 2020 to December 2023. Clinical data, ultrasound features, and pregnancy outcomes were analyzed. RESULTS: In this study, a total of 23 pregnant women were included. Of these, eight were diagnosed in early pregnancy, and 15 were diagnosed in mid-pregnancy. Seven participants had concurrent uterine fibroids, 10 had a history of abdominal or pelvic surgery, and two had ovarian cysts. A total of 13 cases presented with symptoms of urethral obstruction, three with rectal pressure symptoms, five cases with tight and stiff lower abdomen and two cases without special discomfort. Seventeen cases exhibited cervical compression with thinning and elongation, measuring approximately 39 to 73 mm. All 23 cases underwent manual or knee-chest positioning repositioning, with one case requiring surgical intervention. Ultimately, 22 cases resulted in full-term live births, one case experienced fetal demise at 24 weeks and one case experienced gravid uterine incarceration again in the third week after successful manual reduction, and manual reduction was performed again. CONCLUSION: Early diagnosis is critical for obstetric management and clinical prognosis, facilitating the successful release of the incarcerated uterus. The earlier the diagnosis, the higher the likelihood of successfully releasing the incarcerated uterus.

2.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282413

RESUMEN

The interplay between chromatin structure and phase-separating proteins is an emerging topic in cell biology with implications for understanding disease states. Here, we investigate the functional relationship between bromodomain protein 4 (BRD4) and chromatin architecture. By combining molecular dynamics simulations with live-cell imaging, we demonstrate that BRD4, when mutated at specific N-terminus sites, significantly impacts nucleosome nanodomain (NN) organization and dynamics. Our findings reveal that enhanced chromatin binding activity of BRD4 condenses NNs, while both loss or gain of BRD4 chromatin binding reduced diffusion of single nucleosomes, suggesting a role for BRD4 in the regulation of nanoscale chromatin architecture and the chromatin microenvironment. These observations shed light on the nuanced regulation of chromatin structure by BRD4, offering insights into its role in maintaining the nuclear architecture and transcriptional activity.

3.
BMC Nurs ; 23(1): 664, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294683

RESUMEN

PURPOSE: This study aims to summarize the latest and best evidence on central venous access device-related thrombosis (CRT) in hospitalized children, which provides theoretical support for standardizing the preventive care practice of CRT in hospitalized children. METHODS: Relevant guidelines, systematic reviews and expert consensuses were reviewed through ten guideline websites, six professional association websites and seven databases. The literature evaluation was conducted, and the best evidence from qualified studies was extracted and summarized. Furthermore, the best evidence was summarized through expert consultation and localized for the preventive care practice of CRT in hospitalized children in China. RESULTS: A total of 14 topics and 68 best evidence were collected, including personnel qualification and quality management, pediatric patient selection, risk assessment, central venous access device (CVAD) selection and use, tip position, catheter maintenance, basic prevention, drug prevention, imaging examination, health education, nursing records, follow-up, CVAD removal and others. CONCLUSION: In this study, the best evidence based on evidence-based nursing was summarized, and expert consultation was adopted to localize the best evidence collected. It is of great significance to standardize the clinical practice of pediatric nurses and ensure the effectiveness of CRT preventive care for hospitalized children, thus guaranteeing the safety of hospitalized children with CVAD catheterization.

4.
Environ Sci Technol ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39344067

RESUMEN

The antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) is an emerging pollutant in the marine environment, which may disrupt the thyroid endocrine system. However, DCOIT toxicity in relation to thyroid endocrine disruption and the underlying mechanisms remains largely unclear. In this study, in vivo, in silico, in vitro, and ex vivo assays were performed to clarify DCOIT's thyroid toxicity. First, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of DCOIT for an entire life cycle. The results demonstrated that DCOIT exposure potently stimulated the hypothalamic-pituitary-thyroid axis, characterized by hyperthyroidism symptom induction and prevalent key gene and protein upregulation in the brain. Moreover, the in silico and in vitro results evidenced that DCOIT could bind to thyroid hormone receptor ß (TRß) and interact synergistically with triiodothyronine, thus promoting GH3 cell proliferation. The CUT&Tag experiment found that DCOIT interfered with the affinity fingerprint of TRß to target genes implicated in thyroid hormone signaling cascade regulation. Furthermore, ex vivo, Chem-seq revealed that DCOIT directly bound to the genomic sequences of thyrotropin-releasing hormone receptor b and thyroid-stimulating hormone receptor in marine medaka brain tissues. In conclusion, the current multifaceted evidence confirmed that DCOIT has a strong potency for thyroid endocrine system disruption and provided comprehensive insights into its toxicity mechanisms.

5.
Aquat Toxicol ; 276: 107098, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39298911

RESUMEN

Yangtze finless porpoises (YFP) accumulate high levels of per- and polyfluoroalkyl substances (PFASs). However, the health impacts of PFASs to YFP are still unknown because it is technically and ethically unfeasible to use the critically endangered YFP in toxicological exposures. To uncover the potential toxicities of PFASs to YFP, this study exposed a YFP umbilical cord fibroblast cell line to perfluorobutane sulfonate (PFBS), an emerging PFASs pollutant in the aquatic environments. After exposure, the cytotoxicity and mechanisms of PFBS were explored. Our preliminary experiments found that PFBS compromised the cell viability in a concentration and duration dependent manner. In an exposure of 48-h duration, the maximum no observed effect concentration (NOEC) of PFBS was determined to be 400 µM. High-throughput proteomics were then conducted to identify the differentially expressed proteins in YFP cells exposed to 400 µM PFBS for 48 h. The results found that PFBS exposure significantly perturbed the proteome fingerprints of YFP umbilical cord fibroblast cells. Functional annotation of differential proteins showed that PFBS had the potential to impair a variety of biological processes associated with the immunity, oxidative stress, metabolism, and proteolysis. Consistently, the intracellular levels of reactive oxygen species (ROS) and proinflammatory cytokine IL-1ß were significantly increased by PFBS in YFP umbilical cord fibroblast cells. Overall, this study highlights the toxic effects of emerging PFASs on YFP and provides reference data to evaluate the health risks of aquatic pollution under the context of national YFP protection. To our knowledge, this is the first omics study using YFP umbilical cord fibroblast cells in ecotoxicology of PFASs, which is applicable to various cetacean species and pollutants.

6.
Ann Hematol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177794

RESUMEN

Anemia is the most common symptom in patients with myelodysplastic syndromes (MDS). Programmed cell death of erythrocytes is one of the contributing factors to anemia. Ferroptosis is a newly identified form of iron-dependent cell death. The aim of this study is to investigate whether anemia in MDS patients is associated with ferroptosis of nucleated erythrocytes(NEs).We detected lipid peroxidation levels, Fe2+ contents, cell death rates, glutathione (GSH) and malondialdehyde (MDA) levels in bone marrow CD235a+ NEs of MDS patients. Expression levels of ferroptosis-related molecules (ACSL4, GPX4, and SLC7A11) were evaluated through qRT-PCR and Western Blotting. Correlation between these markers and clinical parameters were analyzed. To further substantiate that the mode of cell death with CD235a+ NEs of MDS patients was attributed to the ferroptosis pathway, we applied Fer-1 to inhibit ferroptosis. Cell viability was assessed using CCK8, and changes in ferroptosis-related indicators were simultaneously evaluated. We discover that the ferroptosis level of bone marrow NEs in MDS patients was increased, which is related to anemia and iron overload. Ferroptosis might be one of the causes of anemia in MDS patients.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39180420

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a chronic disease characterized by cartilage degeneration and inflammation, with no approved disease-modifying drugs. This study aimed to identify pathogenic genes and elucidate their mechanism in OA. METHODS: We systematically identified pathogenic genes combined sing-cell and bulk transcriptome profiles of cartilage tissues in OA. Adenovirus carrying the serpin peptidase inhibitor clade E member 2 (serpinE2) or exogenous serpinE2 was injected into monosodium iodoacetate (MIA)-induced OA-model rats. Histological analysis, immunohistochemistry, and Alcian blue staining were performed. In vitro, immunofluorescence, quantitative real-time PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot assays were performed. RESULTS: SerpinE2 exhibited elevated expression and hypomethylation, showing a positive association with collagen pathway activities in patients with OA. Silencing serpinE2 aggravated MIA-induced knee cartilage degeneration in OA-model rats. Conversely, the intra-articular injection of exogenous serpinE2 ameliorated articular cartilage degeneration, reduced pain-related behavioral responses, and relieve synovitis in MIA-induced OA-model rats. Exogenous serpinE2 not only attenuated the elevation of NLRP3, IL-1ß, and caspase1 expression levels but also restored the reduction in cell viability induced by lipopolysaccharide (LPS) in chondrocytes. Mechanistically, we found that exogenous serpinE2 inhibited LPS-induced reactive oxygen species (ROS) release and NF-κB signalling activation. CONCLUSIONS: SerpinE2 plays a protective role in cartilage and synovium tissues, suggesting that serpinE2 gene transfer or molecules that upregulate serpinE2 expression could be therapeutic candidates for OA.

8.
Crit Rev Food Sci Nutr ; : 1-14, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213149

RESUMEN

Foodborne pathogens are a major threat to both food safety and public health. The current trend toward fresh and less processed foods and the misuse of antibiotics in food production have made controlling these pathogens even more challenging. The outer membrane has been employed as a practical target to combat foodborne Gram-negative pathogens due to its accessibility and importance. In this review, the compositions of the outer membrane are extensively described firstly, to offer a thorough overview of this target. Current strategies for disrupting the outer membrane are also discussed, with emphasized on their mechanism of action. The disruption of the outer membrane structure, whether caused by severe damage of the lipid bilayer or by interference with the biosynthesis pathway, has been demonstrated to represent an effective antimicrobial strategy. Interference with the outer membrane-mediated functions of barrier, efflux and adhesion also contributes to the fight against Gram-negative pathogens. Their potential for control of foodborne pathogens in the production chain are also proposed. However, it is possible that multiple components in the food matrix may act as a protective barrier against microorganisms, and it is often the case that contamination is not caused by a single microorganism. Further investigation is needed to determine the effectiveness and safety of these methods in more complex systems, and it may be advisable to consider a multi-technology combined approach. Additionally, further studies on outer membranes are necessary to discover more promising mechanisms of action.

9.
Neurobiol Dis ; 200: 106626, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39122123

RESUMEN

The kidney-brain axis is a bidirectional communication network connecting the kidneys and the brain, potentially affected by inflammation, uremic toxin, vascular injury, neuronal degeneration, and so on, leading to a range of diseases. Numerous studies emphasize the disruptions of the kidney-brain axis may contribute to the high morbidity of neurological disorders, such as cognitive impairment (CI) in the natural course of chronic kidney disease (CKD). Although the pathophysiology of the kidney-brain axis has not been fully elucidated, epidemiological data indicate that patients at all stages of CKD have a higher risk of developing CI compared with the general population. In contrast to other reviews, we mentioned some commonly used medicines in CKD that may play a pivotal role in the pathogenesis of CI. Revealing the pathophysiology interactions between kidney damage and brain function can reduce the potential risk of future CI. This review will deeply explore the characteristics, indicators, and potential pathophysiological mechanisms of CKD-related CI. It will provide a theoretical basis for identifying CI that progresses during CKD and ultimately prevents and treats CKD-related CI.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Riñón , Insuficiencia Renal Crónica , Humanos , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Encéfalo/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/metabolismo , Riñón/fisiopatología , Animales
10.
Front Oncol ; 14: 1419145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161379

RESUMEN

This case report describes a 16-year-old patient with refractory Hodgkin's lymphoma who developed bilateral anterior and intermediate uveitis as an adverse reaction to Brentuximab vedotin (BV). This is a rare case of an ocular adverse reaction potentially related to BV, with symptoms like blurred vision, decreased visual acuity, photophobia, and redness. Potential mechanisms include BV targeting CD30+ T cells in the uveal tissue or an immune response triggered by the microtubule-disrupting agent MMAE within BV. This highlights the need for vigilant monitoring of ocular adverse events in BV-treated patients and further research into their mechanisms and management.

11.
Poult Sci ; 103(10): 104052, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067128

RESUMEN

Four experiments were performed to investigate the role of the mitogen-activated protein kinase (MAPK) signaling pathway in intestinal absorption of phosphorus (P) and calcium (Ca) in broiler chickens. Experiment 1 assessed how dietary levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) influence the gene expression of intestinal P and Ca transporters in broilers. Experiment 2 evaluated the effects of 1,25(OH)2D3 administered via intraperitoneal injection on the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Experiments 3 and 4 investigated the effect of ERK and p38MAPK inhibitors on the expression of intestinal P and Ca transporters. The findings demonstrated that broilers (1-21 days old) fed a 1,25(OH)2D3-deficient diet (0.625 µg/kg) exhibited reduced body weight, tibia P and Ca levels, and mRNA levels of P transporters (NaPi-IIb, PiT-1, and PiT-2), Ca transporters (NCX1, PMCA1b, and CaBP-D28k), vitamin D receptors (VDR), ERK, and p38MAPK in the duodenum (Experiment 1) (P < 0.05). By comparison, the growth, bone quality, and mRNA levels of genes (except for duodenal NaPi-IIb) in broilers were similar to those in broilers fed the control diet when dietary 1,25(OH)2D3 was adequate (5 µg/kg) (Experiment 1) (P > 0.05). After intraperitoneal injection of 1,25(OH)2D3, the mRNA level of jejunal NaPi-IIb and the protein level of p-p38MAPK/t-p38MAPK in broilers (9-14 days old) decreased (P < 0.05), whereas the mRNA level of CaBP-D28k and the protein level of p-ERK/t-ERK increased (Experiment 2) (P < 0.05). The mRNA and protein expression of jejunal NaPi-IIb and the protein expression of CaBP-D28k in broilers (9-17 days old) treated with the ERK inhibitor PD98059 were greater than those in the control group (Experiment 3) (P < 0.05). Similarly, compared with control broilers, broilers (9-17 days old) treated with the p38MAPK inhibitor SB203580 showed elevated mRNA expression of jejunal NaPi-IIb and CaBP-D28k (Experiment 4) (P < 0.05). These results suggest that adequate supplementation with 1,25(OH)2D3 (5 µg/kg) can restore broiler growth and bone quality by upregulating the transcription of genes involved in intestinal P and Ca absorption. Additionally, the ERK and p38MAPK signaling pathways are implicated in the modulatory effect of 1,25(OH)2D3 on the absorption of P and Ca in broilers.


Asunto(s)
Alimentación Animal , Calcitriol , Pollos , Dieta , Sistema de Señalización de MAP Quinasas , Animales , Pollos/metabolismo , Dieta/veterinaria , Calcitriol/farmacología , Calcitriol/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Alimentación Animal/análisis , Absorción Intestinal/efectos de los fármacos , Masculino , Fósforo/metabolismo , Calcio/metabolismo , Fósforo Dietético/metabolismo , Fósforo Dietético/administración & dosificación , Calcio de la Dieta/metabolismo , Vitaminas/administración & dosificación , Vitaminas/farmacología , Vitaminas/metabolismo , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Distribución Aleatoria , Suplementos Dietéticos/análisis
12.
J Control Release ; 372: 715-727, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955253

RESUMEN

Chemo-immunotherapy holds the advantage of specific antitumor effects by activating cytotoxic lymphocyte cells (CTLs) immune response. However, multiple barriers have limited the outcomes partly due to tumor-cell-mediated exhaustion of CTLs in the immunosuppressive tumor microenvironment (iTME). Here, we rationally designed a simple-yet-versatile Ca2+ nanogenerator to modulate iTME for enhancing 2-deoxyglucose (2-DG) mediated chemo-immunotherapy. Briefly, after 2-DG chemotherapy, CaO2 nanoparticles coated with EL4 cell membrane (denoted as CaNP@ECM) could preferentially accumulate in tumor tissue via adhesion between LFA-1 on EL4 cell membrane and ICAM-1 on inflamed endothelial cell in tumor tissues and display a series of benefits for CTLs: i) Increasing glucose availability of CTLs while reducing lactic acid secretion through Ca2+ overloading mediated inhibition of tumor cell glycolysis, as well as relieving hypoxia; ii) Reversing CTLs exhaustion via TGF-ß1 scavenging and PD-L1 blockade through PD-1 and TGF-ß1R on EL4 cell membrane; iii) Boosting tumor immunotherapy via immunologic death (ICD) of tumor cells induced by Ca2+ overloading. We demonstrate that the multi-modal Ca2+ nanogenerator rescues T cells from exhaustion and inhibits tumor growth both in vitro and in vivo. More importantly, the study also facilitate the development of glucose metabolism inhibition-based tumor immunotherapy via Ca2+ overloading.


Asunto(s)
Calcio , Desoxiglucosa , Inmunoterapia , Ratones Endogámicos C57BL , Nanopartículas , Microambiente Tumoral , Animales , Inmunoterapia/métodos , Desoxiglucosa/farmacología , Desoxiglucosa/administración & dosificación , Nanopartículas/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Calcio/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Ratones , Femenino , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Óxidos , Humanos , Ratones Endogámicos BALB C , Agotamiento de Células T , Compuestos de Calcio
13.
aBIOTECH ; 5(2): 214-218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974869

RESUMEN

Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00153-9.

14.
Pharmaceutics ; 16(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38931866

RESUMEN

Background: Nanoparticles conjugated with fluorescent probes have versatile applications, serving not only for targeted fluorescent imaging but also for evaluating the in vivo profiles of designed nanoparticles. However, the relationship between fluorophore density and nanoparticle behavior remains unexplored. Methods: The IR783-modified liposomes (IR783-sLip) were prepared through a modified ethanol injection and extrusion method. The cellular uptake efficiency of IR783-sLip was characterized by flow cytometry and fluorescence microscope imaging. The effects of IR783 density on liposomal in vivo behavior were investigated by pharmacokinetic studies, biodistribution studies, and in vivo imaging. The constitution of protein corona was analyzed by the Western blot assay. Results: Dense IR783 modification improved cellular uptake of liposomes in vitro but hindered their blood retention and tumor imaging performance in vivo. We found a correlation between IR783 density and protein corona absorption, particularly IgM, which significantly impacted the liposome performance. Meanwhile, we observed that increasing IR783 density did not consistently improve the effectiveness of tumor imaging. Conclusions: Increasing the density of modified IR783 on liposomes is not always beneficial for tumor near-infrared (NIR) imaging yield. It is not advisable to prematurely evaluate novel nanomaterials through fluorescence dye conjugation without carefully optimizing the density of the modifications.

15.
Comput Struct Biotechnol J ; 23: 2388-2406, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38882682

RESUMEN

Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.

16.
J Sci Food Agric ; 104(13): 8230-8239, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38873964

RESUMEN

BACKGROUND: Chronic excessive alcohol consumption can lead to alcoholic fatty liver, posing substantial health risks. l-Theanine (LTA) and epigallocatechin gallate (EGCG) in tea exert antioxidant and hepatoprotective effects. However, the combined effects of LTA and EGCG on rats with alcoholic fatty liver, and the underlying mechanisms of such effects, remain unclear. In this study, Sprague Dawley (SD) rats were fed with alcohol for 6 weeks to induce alcoholic fatty liver. Subsequently, for another 6 weeks, the rats were administered LTA (200 mg kg-1 day-1), EGCG (200 mg kg-1 day-1), or a combination of LTA with EGCG (40 mg kg-1 day-1 l-Thea +160 mg kg-1 day-1 EGCG), respectively. RESULTS: The combined use of LTA and EGCG for alcoholic fatty liver disease had more significant effects than their individual administration. This combination reduced the activity of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as the levels of hepatic triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in the rats. The combined intervention also increased hepatic superoxide dismutase (SOD) and glutathione peroxidase activity. Reductions in hepatic fat accumulation and inflammatory responses were observed. The mechanism underlying these effects primarily involved the inhibition of fatty acid synthesis and the alleviation of lipid peroxidation through the downregulation of the mRNA and protein expression of TNF-α, SREBP1c, and CYP2E1 and the upregulation of the mRNA and protein expression of ADH1, ALDH2, Lipin-1, PPARαPPARα, AMPK, and PGC-1α, thereby promoting the oxidative decomposition of fatty acids and reducing the synthesis of cholesterol and glucose. CONCLUSION: l-Theanine and EGCG appear to be able to alleviate alcoholic fatty liver by modulating lipid metabolism and ameliorating oxidative stress, indicating their potential as natural active ingredients in anti-alcoholic fatty liver food products. © 2024 Society of Chemical Industry.


Asunto(s)
Alanina Transaminasa , Catequina , Hígado Graso Alcohólico , Glutamatos , Hígado , Malondialdehído , Ratas Sprague-Dawley , Animales , Catequina/análogos & derivados , Catequina/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratas , Glutamatos/administración & dosificación , Masculino , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/metabolismo , Malondialdehído/metabolismo , Alanina Transaminasa/metabolismo , Alanina Transaminasa/sangre , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/sangre , Humanos , Antioxidantes , Triglicéridos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Eur J Pharm Biopharm ; 201: 114389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945407

RESUMEN

Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos , Liposomas , Hígado , Fenantrenos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Acetaminofén/farmacocinética , Ratones , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Distribución Tisular , Fenantrenos/farmacocinética , Fenantrenos/administración & dosificación , Fenantrenos/toxicidad , Diterpenos/farmacocinética , Diterpenos/administración & dosificación , Compuestos Epoxi/farmacocinética , Compuestos Epoxi/administración & dosificación , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Ratones Endogámicos C57BL
18.
Oral Oncol ; 154: 106827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735130

RESUMEN

PURPOSE: To investigate patient-reported outcomes among long-term survivors and to analyze their associated risk factors to provide better treatment and symptom management for nasopharyngeal carcinoma patients. MATERIALS AND METHODS: This retrospective study collected patients diagnosed with nasopharyngeal carcinoma who received radical intensity-modulated radiotherapy in our hospital from June 2009 to June 2016. The patients' disease status and patient-reported outcomes were analyzed by follow-up. The ototoxicity was graded according to CTCAE 5.0. RESULTS: A total of 223 patients were included in the study. Among the enrolled patients, the median follow-up time was 8.4 (6.0-13.0) years. Based on the patient-reported outcomes, ototoxicity was the most common symptom (52.9 %). After univariable and multivariable logistic regression, age ≥ 50 years old (OR, 4.066; 95 % CI, 1.799-9.190; P = .001), diabetes (OR, 3.520; 95 % CI, 1.442-8.591; P = .006), D2 ≥ 69 Gy (OR, 3.715; 95 % CI, 1.064-12.969; P = . 040) and V35 ≥ 91.5 % (OR, 3.398; 95 % CI, 1.113-10.372; P = .032) were associated with a higher incidence of grade 3-4 ototoxicity. Then, we constructed the individual nomogram and the C index of the graph was 0.815. By univariable logistic regression, we found that grade 3-4 ototoxicity was associated with an increased risk of multiple other symptoms, dysmasesia, tongue dysfunction, hoarseness, dysphagia and ocular toxicity. CONCLUSION: In long-term survivors of nasopharyngeal carcinoma patients receiving IMRT, the most common patient-reported outcome was ototoxicity. Age ≥ 50 years, diabetes, ear exposure dose of D2 ≥ 69 Gy and V35 ≥ 91.5 % are independent risk factors for grade 3-4 ototoxicity.


Asunto(s)
Supervivientes de Cáncer , Carcinoma Nasofaríngeo , Ototoxicidad , Humanos , Masculino , Femenino , Persona de Mediana Edad , Factores de Riesgo , Estudios Retrospectivos , Ototoxicidad/etiología , Ototoxicidad/epidemiología , Adulto , Neoplasias Nasofaríngeas/radioterapia , Anciano , Radioterapia de Intensidad Modulada/efectos adversos , Medición de Resultados Informados por el Paciente
19.
Cyborg Bionic Syst ; 5: 0100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757045

RESUMEN

Three-dimensional skeleton-based action recognition (3D SAR) has gained important attention within the computer vision community, owing to the inherent advantages offered by skeleton data. As a result, a plethora of impressive works, including those based on conventional handcrafted features and learned feature extraction methods, have been conducted over the years. However, prior surveys on action recognition have primarily focused on video or red-green-blue (RGB) data-dominated approaches, with limited coverage of reviews related to skeleton data. Furthermore, despite the extensive application of deep learning methods in this field, there has been a notable absence of research that provides an introductory or comprehensive review from the perspective of deep learning architectures. To address these limitations, this survey first underscores the importance of action recognition and emphasizes the significance of 3-dimensional (3D) skeleton data as a valuable modality. Subsequently, we provide a comprehensive introduction to mainstream action recognition techniques based on 4 fundamental deep architectures, i.e., recurrent neural networks, convolutional neural networks, graph convolutional network, and Transformers. All methods with the corresponding architectures are then presented in a data-driven manner with detailed discussion. Finally, we offer insights into the current largest 3D skeleton dataset, NTU-RGB+D, and its new edition, NTU-RGB+D 120, along with an overview of several top-performing algorithms on these datasets. To the best of our knowledge, this research represents the first comprehensive discussion of deep learning-based action recognition using 3D skeleton data.

20.
Biosens Bioelectron ; 259: 116417, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795496

RESUMEN

Assembling functional molecules on the surface of an enzyme electrode is the most basic technique for constructing a biosensor. However, precise control of electron transfer interface or electron mediator on the electrode surface remains a challenge, which is a key step that affects the stability and sensitivity of enzyme-based biosensors. In this study, we propose the use of controllable free radical polymerization to grow stable 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) polymer as electron mediator on enzyme surface for the first time. Through scanning electron microscopy (SEM), Raman spectroscopy, electrode surface coverage measurement, static contact angle (SCA), and a series of electrochemical methods, it has been demonstrated that the TEMPO-based enzyme electrode exhibits a uniform hydrophilic morphology and stable electrochemical performance. Furthermore, the results show that the sensor demonstrates high sensitivity for detecting glucose biomolecules in artificial sweat and serum. Attributing to the quantitative and controllable radical polymerization of TEMPO redox assembled enzyme electrode surface, the as-proposed biosensor providing a use, storage, and inter-batch sensing stability, providing a vital platform for wearable/implantable biochemical sensors.


Asunto(s)
Técnicas Biosensibles , Óxidos N-Cíclicos , Electrodos , Enzimas Inmovilizadas , Oxidación-Reducción , Polimerizacion , Técnicas Biosensibles/métodos , Óxidos N-Cíclicos/química , Enzimas Inmovilizadas/química , Técnicas Electroquímicas/métodos , Glucosa/análisis , Glucosa/química , Glucosa Oxidasa/química , Humanos , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA