Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Clin Transl Neurol ; 11(7): 1732-1749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38738556

RESUMEN

OBJECTIVE: Neuromyelitis optica spectrum disorders (NMOSD) are rare inflammatory astrocytic diseases of the central nervous system (CNS). The roles of immune response gene-1 (IRG1) and the IRG1-itaconic acid-NLRP3 inflammatory pathway in the pathogenesis of NMOSD and the effects of 4-octyl itaconate (4-OI) on the NLRP3 inflammatory pathway in NMOSD are unclear. This study aimed to determine the role of IRG1 and the activation status of the NLRP3 inflammatory pathway in acute-onset NMOSD and to investigate the inhibitory effects of 4-OI on NLRP3 inflammasome activation via the IRG1-itaconic acid-NLRP3 pathway in monocytes and macrophages by using in vitro models. METHODS: Peripheral blood mononuclear cells (PBMCs) and serum were collected from patients with acute NMOSDs and healthy controls (HC), followed by monocyte typing and detection of the expression of NLRP3-related inflammatory factors. Subsequently, the effects of 4-OI on the IRG1-itaconic acid-NLRP3 pathway were investigated in peripheral monocytes from patients with NMOSD and in macrophages induced by human myeloid leukemia mononuclear cells (THP-1 cells) via in vitro experiments. RESULTS: Patients with acute NMOSD exhibited upregulated IRG1 expression. In particular, the upregulation of the expression of the NLRP3 inflammasome and proinflammatory factors was notable in monocytes in acute NMOSD patients. 4-OI inhibited the activation of the IRG1-itaconic acid-NLRP3 inflammatory pathway in the PBMCs of patients with NMOSD. INTERPRETATION: 4-OI could effectively inhibit NLRP3 signaling, leading to the inhibition of proinflammatory cytokine production in patients with NMOSD-derived PBMCs and in a human macrophage model. Thus, 4-OI and itaconate could have important therapeutic value for the treatment of NMOSD in the future.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Neuromielitis Óptica , Succinatos , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Neuromielitis Óptica/tratamiento farmacológico , Succinatos/farmacología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Carboxiliasas
2.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770893

RESUMEN

Exogenous nucleotides (NTs) are considered conditionally essential nutrients, and the brain cannot synthesize NTs de novo. Therefore, the external supplementation of exogenous NTs is of great significance for maintaining normal neuronal metabolism and function under certain conditions, such as brain aging. This study, therefore, sets out to assess the neuroprotective effect of four kinds of single exogenous NTs and a mixture of the NTs, and to elucidate the potential mechanism. A rat pheochromocytoma cell line PC-12 was treated with different concentrations of exogenous NTs after 4 h of exposure to 200 µM H2O2. We found that the exogenous NTs exerted significant neuroprotection through decreasing neuron apoptosis and DNA damage, ameliorating inflammation and mitochondrial dysfunction, promoting cell viability, and augmenting antioxidant activity, and that they tended to up-regulate the NAD+/SIRTI/PGC-1α pathway involved in mitochondrial biogenesis. Among the different NTs, the neuroprotective effect of AMP seemed to be more prominent, followed by the NT mixture, NMN, and CMP. AMP also exhibited the strongest antioxidant activity in H2O2-treated PC-12 cells. UMP was excellent at inhibiting neuronal inflammation and improving mitochondrial function, while GMP offered major advantages in stabilizing mitochondrial membrane potential. The mixture of NTs had a slightly better performance than NMN, especially in up-modulating the NAD+/SIRTI/PGC-1α pathway, which regulates mitochondrial biogenesis. These results suggest that antioxidant activity, anti-inflammatory activity, and protection of mitochondrial function are possible mechanisms of the neuroprotective actions of exogenous NTs, and that the optimization of the mixture ratio and the concentration of NTs may achieve a better outcome.


Asunto(s)
Antioxidantes , Fármacos Neuroprotectores , Ratas , Animales , Células PC12 , Antioxidantes/farmacología , Antioxidantes/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Nucleótidos/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , NAD/metabolismo , Muerte Celular , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
3.
Soft Matter ; 13(3): 647-657, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27991635

RESUMEN

Boundary walls can drive the tangential flow of fluids by phoretic osmosis when exposed to a gradient field, including chemical, thermal or electric potential gradient. At the microscale, such boundary driving mechanisms become quite pronounced. Here, we propose a mesoscale strategy to simulate the phoretically osmotic boundaries, in which the microscopic fluid-wall interactions are coarse-grained into the bounce-back or specular reflection, and the phoretically osmotic force is generated by selectively reversing the tangential velocity of specific fluid particles near the boundary wall. With this scheme, the phoretically osmotic boundary can be realized with a minimal modification to the widely used mesoscopic no-slip/slip hydrodynamic boundary condition. Its implementation is quite efficient and the resulting phoretically osmotic flow is flexibly tunable. Its validity is verified by performing extensive mesoscale simulations for both the diffusioosmotic and thermoosmotic boundaries. In particular, we use the proposed scheme to investigate fluid transport driven by the phoretic osmosis in microfluidic systems and the effects of the diffusioosmosis on the dynamics of active catalytic colloidal particles. Our work thus offers new possibilities to study the phoretically osmotic effect in active complex fluids and microfluidic systems by simulation, where the gradient fields are ubiquitous.

4.
Am J Pathol ; 182(4): 1239-47, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23399488

RESUMEN

The origin of the myofibroblast in fibrotic lung disease is uncertain, and no effective medical therapy for fibrosis exists. We have previously demonstrated that transforming growth factor-ß1 (TGF-ß1) induces pleural mesothelial cell (PMC) transformation into myofibroblasts and haptotactic migration in vitro. Whether PMC differentiation and migration occurs in vivo, and whether this response can be modulated for therapeutic benefit, is unknown. Here, using mice recombinant for green fluorescent protein (GFP) driven by the Wilms tumor-1 (WT-1) promoter, we demonstrate PMC trafficking into the lung and differentiation into myofibroblasts. Carbon monoxide or the induction of heme oxygenase-1 (HO-1) inhibited the expression of myofibroblast markers, contractility, and haptotaxis in PMCs treated with TGF-ß1. Intrapleural HO-1 induction inhibited PMC migration after intratracheal fibrogenic injury. PMCs from patients with idiopathic pulmonary fibrosis (IPF) exhibited increased expression of myofibroblast markers and enhanced contractility and haptotaxis, compared with normal PMCs. Carbon monoxide reversed this IPF PMC profibrotic phenotype. WT-1-expressing cells were present within fibrotic regions of the lungs in IPF subjects, supporting a role for PMC differentiation and trafficking as contributors to the myofibroblast population in lung fibrosis. Our findings also support a potential role for pleural-based therapies to modulate pleural mesothelial activation and parenchymal fibrosis progression.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Células Epiteliales/patología , Fibrosis Pulmonar Idiopática/patología , Lesión Pulmonar/patología , Pleura/patología , Administración por Inhalación , Animales , Biomarcadores/metabolismo , Monóxido de Carbono/metabolismo , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Hemo-Oxigenasa 1/biosíntesis , Hemo-Oxigenasa 1/deficiencia , Hemina/farmacología , Humanos , Fibrosis Pulmonar Idiopática/enzimología , Imidazoles/farmacología , Pulmón/patología , Lesión Pulmonar/enzimología , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Compuestos Organometálicos/farmacología , Factor de Crecimiento Transformador beta1/farmacología
5.
Age (Dordr) ; 35(2): 315-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22218782

RESUMEN

It is well known that attenuated insulin/insulin-like growth factor signaling (IIS) has a positive effect on longevity in several animal species, including mice. Here, we demonstrate that a population of murine pluripotent very small embryonic-like stem cells (VSELs) that reside in bone marrow (BM) is protected from premature depletion during aging by intrinsic parental gene imprinting mechanisms and the level of circulating insulin-like growth factor-I (IGF-I). Accordingly, an increase in the circulating level of IGF-I, as seen in short-lived bovine growth hormone (bGH)-expressing transgenic mice, which age prematurely, as well as in wild-type animals injected for 2 months with bGH, leads to accelerated depletion of VSELs from bone marrow (BM). In contrast, long-living GHR-null or Ames dwarf mice, which have very low levels of circulating IGF-I, exhibit a significantly higher number of VSELs in BM than their littermates at the same age. However, the number of VSELs in these animals decreases after GH or IGF-I treatment. These changes in the level of plasma-circulating IGF-I corroborate with changes in the genomic imprinting status of crucial genes involved in IIS, such as Igf-2-H19, RasGRF1, and Ig2R. Thus, we propose that a chronic increase in IIS contributes to aging by premature depletion of pluripotent VSELs in adult tissues.


Asunto(s)
Envejecimiento/genética , Médula Ósea/metabolismo , Impresión Genómica/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Células Madre Pluripotentes/citología , Análisis de Varianza , Animales , Tamaño de la Célula , Hormona del Crecimiento/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/metabolismo , Transducción de Señal/genética
6.
J Appl Toxicol ; 33(1): 71-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21818760

RESUMEN

Phosgene is a poorly water-soluble gas penetrating the lower respiratory tract which can induce acute lung injury characterized by a latent phase of fatal pulmonary edema. Pulmonary edema caused by phosgene is believed to be a consequence of oxidative stress and inflammatory responses. Ethyl pyruvate (EP) has been demonstrated to have anti-inflammatory and anti-oxidative properties in vivo and in vitro. The potential therapeutic role of EP in phosgene-induced pulmonary edema has not been addressed so far. In the present study, we aim to investigate the protective effects of EP on phosgene-induced pulmonary edema and the underlying mechanisms. Rats were administered with EP (40 mg kg(-1)) and RAW264.7 cells were also incubated with it (0, 2, 5 or 10 µm) immediately after phosgene (400 ppm, 1 min) or air exposure. Wet-to-dry lung weight ratio (W:D ratio), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production, cyclooxygenase2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, and mitogen-activated protein kinases activities (MAPKs) were measured. Our results showed that EP treatment attenuated phosgene-induced pulmonary edema and decreased the level of NO and PGE(2) dose-dependently. Furthermore, EP significantly reduced COX-2 expression, iNOS expression and MAPK activation induced by phosgene. Moreover, specific inhibitors of MAPKs reduced COX-2 and iNOS expression induced by phosgene. These findings suggested that EP has a protective role against phosgene-induced pulmonary edema, which is mediated in part by inhibiting MAPK activation and subsequently down-regulating COX-2 and iNOS expression as well as decreasing the production of NO and PGE(2).


Asunto(s)
Pulmón/efectos de los fármacos , Fosgeno/toxicidad , Sustancias Protectoras/farmacología , Edema Pulmonar/prevención & control , Piruvatos/farmacología , Animales , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Sustancias para la Guerra Química/toxicidad , Ciclooxigenasa 2/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Edema Pulmonar/inducido químicamente , Edema Pulmonar/patología , Ratas , Ratas Sprague-Dawley
7.
Eur J Pharmacol ; 625(1-3): 31-40, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19835865

RESUMEN

Cancer metastasis is a major clinical problem that contributes to unsuccessful therapy. Augmenting evidence indicates that metastasizing cancer cells employ several mechanisms that are involved in developmental trafficking of normal stem cells. Stromal-derived factor-1 (SDF-1) is an important alpha-chemokine that binds to the G-protein-coupled seven-transmembrane span CXCR4. The SDF-1-CXCR4 axis regulates trafficking of normal and malignant cells. SDF-1 is an important chemoattractant for a variety of cells including hematopoietic stem/progenitor cells. For many years, it was believed that CXCR4 was the only receptor for SDF-1. However, several reports recently provided evidence that SDF-1 also binds to another seven-transmembrane span receptor called CXCR7, sharing this receptor with another chemokine family member called Interferon-inducible T-cell chemoattractant (I-TAC). Thus, with CXCR7 identified as a new receptor for SDF-1, the role of the SDF-1-CXCR4 axis in regulating several biological processes becomes more complex. Based on the available literature, this review addresses the biological significance of SDF-1's interaction with CXCR7, which may act as a kind of decoy or signaling receptor depending on cell type. Augmenting evidence suggests that CXCR7 is involved in several aspects of tumorogenesis and could become an important target for new anti-metastatic and anti-cancer drugs.


Asunto(s)
Quimiocina CXCL12/metabolismo , Neoplasias/tratamiento farmacológico , Receptores CXCR/metabolismo , Animales , Antineoplásicos/farmacología , Quimiocina CXCL11/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/fisiopatología , Neoplasias/fisiopatología , Receptores CXCR4/metabolismo , Transducción de Señal
8.
Inhal Toxicol ; 21(4): 374-80, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19235614

RESUMEN

Secreted phospholipase A(2) of group IIA (sPLA(2)-IIA) has been involved in a variety of inflammatory diseases, including acute lung injury. However, the specific role of sPLA(2)-IIA in phosgene-induced acute lung injury remains unidentified. The aim of the present study was to investigate the correlation between sPLA(2)-IIA activity and the severity of phosgene-induced acute lung injury. Adult male rats were randomly exposed to either normal room air (control group) or a concentration of 400 ppm phosgene (phosgene-exposed group) for there are 5 phosgene-exposed groups altogether. For the time points of 1, 3, 6, 12 and 24 h post-exposure, one phosgene-exposed group was sacrificed at each time point. The severity of acute lung injury was assessed by Pa(O2)/F(IO2) ratio, wet-to-dry lung-weight ratio, and bronchoalveolar lavage (BAL) fluid protein concentration. sPLA(2)-IIA activity in BAL fluid markedly increased between 1 h and 12 h after phosgene exposure, and reached its highest level at 6 h. Moreover, the trend of this elevation correlated well with the severity of lung injury. These results indicate that sPLA(2)-IIA probably participates in phosgene-induced acute lung injury.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Fosfolipasas A2 Grupo II/biosíntesis , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/enzimología , Fosgeno/toxicidad , Animales , Análisis de los Gases de la Sangre , Líquido del Lavado Bronquioalveolar , Permeabilidad Capilar/efectos de los fármacos , Fosfolipasas A2 Grupo II/genética , Interleucina-10/biosíntesis , Pulmón/patología , Enfermedades Pulmonares/patología , Masculino , Tamaño de los Órganos , Oxígeno/sangre , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/biosíntesis
9.
Inhal Toxicol ; 18(1): 71-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16326403

RESUMEN

Phosgene inhalation can induced pulmonary edema formation. The purpose of this study was to investigate cell of apoptosis in pulmonary edema mice induced by phosgene. Fifty-two BALB/c mice were random divided into a negative group and a positive group with 26 mice in each. Mice were exposed for 5 min to air and phosgene in the negative group and in the positive one, respectively. The dose of phosgene was 539 ppm. After 4 h of exposure, all mice were anesthetized. Lungs were analyzed for lung wet/dry weight ratio and pathological alternation. The method of isolation and culture of alveolar type II cells (ATII cells) was established to observe their apoptosis by electron microscope and flow cytometry. Apoptosis of lung cells was observed by DNA gel electrophoresis and TUNEL. The lung wet/dry weight ratio was significantly higher in the positive group (6.42 +/- 1.00) than in the negative group (4.25 +/- 0.47, p < 0.05). A large amount of fluid effusion was observed in the alveolus of mice induced by phosgene. Alveolar type II cells were identified by tannic acid staining and electron microscope. The apoptotic signs in alveolar type II cells, alveolar type I cells, eosinophils, macrophages, symphocytes, and ciliated cells were viewed under electron microscope in positive group. The ratio of apoptosis cells (40.26 +/- 7.74) in positive was higher than that (1.58 +/- 1.01, p < 0.001) in the negative group by flow cytometry. DNA ladder alternation was seen through DNA gel electrophoresis. Apoptosis of epithelia and vascular endothelia in lung were found by TUNEL. These results indicate that there is success in establishing a model of pulmonary edema and method of isolation and culture of AT II cells in BALB/c mice. Phosgene can induce apoptosis of cells in the lungs of BALB/c mice, and this indicates that pulmonary edema is related to apoptosis of lung cells in mice, induced by phosgene.


Asunto(s)
Apoptosis/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Fosgeno/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Animales , Células Cultivadas , Citometría de Flujo , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Tamaño de los Órganos/efectos de los fármacos , Alveolos Pulmonares/patología , Edema Pulmonar/inducido químicamente , Edema Pulmonar/patología
10.
J Biol Chem ; 278(46): 45539-45, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12890681

RESUMEN

The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.


Asunto(s)
Cartílago/metabolismo , Colágeno/metabolismo , Proteínas de la Matriz Extracelular , Proteoglicanos/farmacología , Agrecanos , Animales , Cartílago/citología , Bovinos , Células Cultivadas , Colágeno/química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Interleucina-1/metabolismo , Lectinas Tipo C , Modelos Biológicos , Modelos Químicos , Proteoglicanos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA