RESUMEN
In this work, a novel photocatalyst of ZnIn2S4/Ni(dmgH)2 was designed by a simple chemical precipitation method and used to enhance hydrogen evolution under visible light irradiation. Along with vigorous discharges of hydrogen bubbles, an optimal rate of 36.3 mmol/g/h was reached under UV-Vis light for hydrogen evolution, nearly 4.9 times of the one from pure ZnIn2S4. The heterojunction exhibits steady hydrogen evolution capability and owns a high apparent quantum efficiency (AQE) of 20.45% under the monochromatic light at 420 nm. By coupling ZnIn2S4 with Ni(dmgH)2, an extraordinary photochromic phenomenon was detected and attributed to the active Ni-S component in situ formed between the nickel and sulfur composites under light irradiation. The emerging sulfide benefits light absorption of the system and separation of photogenerated electron and hole pairs. Besides providing a promising photocatalyst for visible light hydrogen production, the present work is hoped to inspire new trends of catalytic medium designs and investigations.
RESUMEN
Benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are commonly used organic ultraviolet (UV) filters and are frequently detected in water environments. In the present study, we studied the potential adverse impacts of UV filter exposures in Ruditapes philippinarum by investigating transcriptomic profiles and non-specific immune enzyme activities. Transcriptome analysis showed that more genes were differentially regulated in EHMC-treated group, and down-regulated genes (2009) were significantly more than up-regulated ones (410) at day 7. Function annotation revealed that pathways "immune system", "cell growth and death" and "infectious diseases" were significantly enriched. Generally, combined qPCR and biochemical analyses demonstrated that short-term exposure to low dose of UV filters could activate immune responses, whereas the immune system would be restrained after prolonged exposure. Taken together, the present study firstly demonstrated the immunotoxicology induced by BP-3, 4-MBC and EHMC on R. philippinarum, indicating their potential threats to the survival of marine bivalves.
Asunto(s)
Bivalvos , Transcriptoma , Animales , Bivalvos/genética , Perfilación de la Expresión Génica , Benzofenonas/análisisRESUMEN
Tris (2-chloroethyl) phosphate (TCEP), an emerging environmental pollutant, has been frequently detected in natural waters. The objective of this study was to investigate possible parental transfer of TCEP and transgenerational effects on the early development and thyroid hormone homeostasis in F1 larvae following parental whole life-cycle exposure to TCEP. To this end, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations (0.8, 4, 20 and 100 µg/L) of TCEP for 120 days until sexual maturation. Parental exposure to TCEP resulted in significant levels of TCEP, developmental toxicity including decreased survival and final hatching rates, accelerated heart rate and elevated malformation rate, as well as induction of oxidative stress and cell apoptosis in F1 offspring. In F1 eggs, declined thyroxin (T4) levels were observed, consistent with those in plasma of F0 adult females, indicating the maternal transfer of thyroid endocrine disruption to the offspring. In addition, mRNA levels of several genes along the hypothalamic-pituitary-thyroid (HPT) axis were significantly modified in F1 larvae, which could be linked to transgenerational developmental toxicity and thyroid hormone disruption. For the first time, we revealed that the parental exposure to environmentally relevant levels of TCEP could cause developmental toxicity and thyroid endocrine disruption in subsequent unexposed generation.
Asunto(s)
Glándula Tiroides , Pez Cebra , Femenino , Animales , Desarrollo Embrionario , Estadios del Ciclo de Vida , Larva , FosfatosRESUMEN
Sulfamethoxazole (SMX), a broad-spectrum antibiotic, has been widely used in the treatment and prevention of infection caused by bacteria in recent years. The present study was aimed to evaluate the response mechanisms to SMX stress in gills and digestive gland of Corbicula fluminea (O. F. Müller, 1774). To this end, clams were exposed to environmentally relevant concentrations of SMX (0, 1, 10 and 100 µg/L) for 7 and 28 days, and siphon behavior, tissue-specific enzymatic and transcriptional changes were assayed. Our results showed that exposure to SMX significantly suppressed filtration rate and acetylcholinesterase (AChE) activity, activated antioxidant defense system and elevated transcription of several genes related to cell apoptosis in gills and digestive gland of clams. In general, SMX at environmentally relevant concentrations exhibited a negative impact on siphon behavior and induced neurotoxicology, oxidative stress and cell apoptosis in C. fluminea. The current study will help broaden our understanding of the ecotoxicity of SMX on freshwater bivalves.
Asunto(s)
Corbicula , Contaminantes Químicos del Agua , Acetilcolinesterasa , Animales , Branquias , Sulfametoxazol/toxicidad , Contaminantes Químicos del Agua/toxicidadRESUMEN
Diclofenac (DCF), one of typical non-steroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in various environmental media. Neverthelessï¼the potential endocrine disrupting effects of DCF on fish were poorly understood. In the present study, zebrafish embryos/larvae were used as a model to evaluate the adverse effects of DCF on development and thyroid system. The results demonstrated that DCF only significantly decreased the heart rate at 72 h post-fertilization (hpf), exhibiting limited influence on the embryonic development of zebrafish. Treatment with DCF significantly reduced whole-body thyroxine (T4) levels, and changed transcriptional levels of several genes related to the hypothalamic-pituitary-thyroid (HPT) axis. These findings provide important information regarding to the mechanisms of DCF-induced developmental toxicity and thyroid disruption in fish.
Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Diclofenaco/toxicidad , Larva/genética , Glándula Tiroides , Hormonas Tiroideas , Contaminantes Químicos del Agua/toxicidadRESUMEN
Glyphosate has been widely and extensively used for weed control because of its excellent herbicidal profile and low costs. However, more than 750 glyphosate products are on the market and are increasingly regarded as water pollutants as they cause adverse effects on aquatic life. Dry cell weight and photosynthesis of Saccharina japonica female gametophytes increased when glyphosate was used as the sole phosphorus source at the concentration of less than 20 mg L-1. Nuclear magnetic resonance (NMR) analysis unambiguously confirmed that female gametophytes of the brown alga Saccharina japonica have the capability of breaking the C-P bond of glyphosate to orthophosphate, which finds the enormous potential of the most common seaweed to degrade the most widely used herbicide in the world. Furthermore, this is the first report on the use of glyphosate as the sole phosphorus source for the growth of eukaryotic cells. Because of the wide distribution and relatively easy cultivation of the fast-growing brown alga Saccharina japonica on the coast, our results set a promising stage for developing large macroalgae-based biotechnologies that can be applied for the remediation of contaminated seawater, which is greener and more cost-effective than conventional treatment methods.