Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 150(5): 264, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767747

RESUMEN

BACKGROUND: Bladder cancer (BCa) is among the most prevalent malignant tumors affecting the urinary system. Due to its highly recurrent nature, standard treatments such as surgery often fail to significantly improve patient prognosis. Our research aims to predict prognosis and identify precise therapeutic targets for novel treatment interventions. METHODS: We collected and screened genes related to the TGF-ß signaling pathway and performed unsupervised clustering analysis on TCGA-BLCA samples based on these genes. Our analysis revealed two novel subtypes of bladder cancer with completely different biological characteristics, including immune microenvironment, drug sensitivity, and more. Using machine learning classifiers, we identified SMAD6 as a hub gene contributing to these differences and further investigated the role of SMAD6 in bladder cancer in the single-cell transcriptome data. Additionally, we analyzed the relationship between SMAD6 and immune checkpoint genes. Finally, we performed a series of in vitro assays to verify the function of SMAD6 in bladder cancer cell lines. RESULTS: We have revealed two novel subtypes of bladder cancer, among which C1 exhibits a worse prognosis, lower drug sensitivity, a more complex tumor microenvironment, and a 'colder' immune microenvironment compared to C2. We identified SMAD6 as a key gene responsible for the differences and further explored its impact on the molecular characteristics of bladder cancer. Through in vitro experiments, we found that SMAD6 promoted the prognosis of BCa patients by inhibiting the proliferation and migration of BCa cells. CONCLUSION: Our study reveals two novel subtypes of BCa and identifies SMAD6 as a highly promising therapeutic target.


Asunto(s)
Aprendizaje Automático , Proteína smad6 , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Pronóstico , Proteína smad6/genética , Proteína smad6/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Proliferación Celular , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica
2.
ACS Nano ; 18(12): 9053-9062, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465964

RESUMEN

Photoreceptor cells of vertebrates feature ultrastructural membranes interspersed with abundant photosensitive ion pumps to boost signal generation and realize high gain in dim light. In light of this, superstructured optoionic heterojunctions (SSOHs) with cation-selective nanochannels are developed for manipulating photo-driven ion pumping. A template-directed bottom-up strategy is adopted to sequentially assemble graphene oxide (GO) and PEDOT:PSS into heterogeneous membranes with sculptured superstructures, which feature programmable variation in membrane topography and contain a donor-acceptor interface capable of maintaining electron-hole separation upon photoillumination. Such elaborate design endows SSOHs with a much higher magnitude of photo-driven ion flux against a concentration gradient in contrast to conventional optoionic membranes with planar configuration. This can be ascribed to the buildup of an enhanced transmembrane potential owing to the effective separation of photogenerated carriers at the heterojunction interface and the increase of energy input from photoillumination due to a synergistic effect of reflection reduction, broad-angle absorption, and wide-waveband absorption. This work unlocks the significance of membrane topographies in photo-driven transmembrane transportation and proposes such a universal prototype that could be extended to other optoionic membranes to develop high-performance artificial ion pumps for energy conversion and sensing.


Asunto(s)
Electrones , Bombas Iónicas , Animales , Potenciales de la Membrana , Transportes , Células Fotorreceptoras
3.
Biochem Biophys Rep ; 37: 101653, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38352122

RESUMEN

Left ventricular noncompaction cardiomyopathy (LVNC) is a cardiovascular disease characterized by arrhythmia and heart failure. In this study, LVNC myocardial samples were collected from patients who underwent heart transplantation and were analyzed using exome sequencing. Approximately half of the LVNC patients carried SCN5A variants, which are associated with clinical symptoms of ventricular tachycardia. To investigate the electrophysiological functions of these SCN5A variants and the underlying mechanism by which they increase arrhythmia susceptibility in LVNC patients, functional evaluations were conducted in CHO-K1 cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using patch-clamp or microelectrode array (MEA) techniques. These findings demonstrated that these SCN5A mutants exhibited gain-of-function properties, leading to increased channel activation and enhanced fast inactivation in CHO-K1 cells. Additionally, these mutants enhanced the excitability and contractility of the cardiomyocyte population in hESC-CMs models. All SCN5A variants induced fibrillation-like arrhythmia and increased the heart rate in cardiomyocytes. However, the administration of Lidocaine, an antiarrhythmic drug that acts on sodium ion channels, was able to rescue or alleviate fibrillation-like arrhythmias and secondary beat phenomenon. Based on these findings, it is speculated that SCN5A variants may contribute to susceptibility to arrhythmia in LVNC patients. Furthermore, the construction of cardiomyocyte models with SCN5A variants and their application in drug screening may facilitate the development of precise therapies for arrhythmia in the future.

4.
Sci Total Environ ; 915: 170159, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242449

RESUMEN

A pilot project for groundwater recharge from rivers is currently being carried out in North China Plain. To investigate the influence of river recharge on groundwater hydrochemical characteristics, dynamic monitoring and analysis of groundwater samples were conducted at a typical recharge site in the Hutuo River alluvial-pluvial fan in the North China Plain from 2019 to 2021. Hydrochemical, isotopic, and multivariate statistical analyses were used to systematically reveal the spatiotemporal variation of groundwater chemistry and its driving factors during groundwater recharge process. The results showed that the groundwater hydrochemical types and characteristics in different recharge areas and recharge periods exhibited obvious spatiotemporal differences. The groundwater type varied from HCO3·SO4-Na·Mg to HCO3·SO4-Ca·Mg in an upstream ecological area, while the groundwater type changed from SO4·HCO3-Mg·Ca to HCO3·SO4-Ca·Mg in the downstream impacted by reclaimed water. Changes in the contents of Ca2+, Mg2+ and HCO3- were mostly controlled by the water-rock interactions and mixing-dilution of recharge water, while the increases in Na+, NO3-, Cl-, SO42- and NO3- contents were mainly due to the infiltration of reclaimed water. Nitrogen and oxygen isotope (δ15N and δ18O) tests and the Bayesian isotope mixing model results further demonstrated that nitrate pollution mainly originated from anthropogenic sources, and the major contribution came from manure and sewage, with an average proportion of 64.6 %. Principal component analysis indicated that water-rock interactions, river-groundwater mixing and redox environment alternation were dominant factors controlling groundwater chemical evolution in groundwater recharge process.

5.
Small ; 20(12): e2307798, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946398

RESUMEN

P-type Sb2Te3 has been recognized as a potential thermoelectric material for applications in low-medium temperature ranges. However, its inherent high carrier concentration and lattice thermal conductivity led to a relatively low ZT value, particularly around room temperature. This study addresses these limitations by leveraging high-energy ball milling and rapid hot-pressing techniques to substantially enhance the Seebeck coefficient and power factor of Sb2Te3, yielding a remarkable ZT value of 0.55 at 323 K due to the donor-like effect. Furthermore, the incorporation of Nb─Ag co-doping increases hole concentration, effectively suppressing intrinsic excitations ≈548 K while maintaining the favorable power factor. Simultaneously, the lattice thermal conductivity can be significantly reduced upon doping. As a result, the ZT values of Sb2Te3-based materials attain an impressive range of 0.5-0.6 at 323 K, representing an almost 100% improvement compared to previous research endeavors. Finally, the ZT value of Sb1.97Nb0.03Ag0.005Te3 escalates to 0.92 at 548 K with a record average ZT value (ZTavg) of 0.75 within the temperature range of 323-573 K. These achievements hold promising implications for advancing the viability of V-VI commercialized materials for low-medium temperature application.

6.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081275

RESUMEN

Here, we report our recent progress in the design, fluid thermodynamics simulation, and high-power test of the2nd harmonic cavity for the China Spallation Neutron Source Phase II. A high-performance and large-size magnetic alloy (MA) core was developed as the load material for the radiofrequency cavity to achieve a high gradient of 40 kV/m. The water-cooling structure and cooling efficiency were studied and improved through numerical analysis and thermal experiments. The long-term stability of the cavity, especially the waterproofness of the MA cores with high heat load, was verified by high power tests.

7.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117197

RESUMEN

The utilization of a low-frequency (<200 MHz) RF system in storage facilitates the attainment of ultra-low emittances in synchrotron light sources through on-axis injection. This paper focuses on the development of a low-frequency normal conducting (NC) cavity with higher-order mode (HOM) damping for fourth-generation synchrotron light sources. We propose a novel approach to achieve efficient HOM damping in a NC cavity by optimizing the lowest frequency HOM and implementing a beam-line absorber. Notably, unlike conventional NC cavities, the presence of a large beam tube for the beam-line absorber does not compromise the accelerating performance in a coaxial resonant cavity, enabling effective HOM damping while maintaining a high shunt impedance. Through simulations, the prototype design of a 166.6 MHz HOM-damped cavity demonstrates a fundamental mode impedance of ∼8 MΩ, with longitudinal and transverse HOM impedances below 2.0 and 50 kΩ/m, respectively.

8.
Environ Monit Assess ; 195(10): 1213, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37709956

RESUMEN

This study investigates the quantity and quality variations of dissolved organic matter (DOM) leaching from the soil in groundwater irrigation area of the North China Plain, constrained by the concentration of Ca/Na. Soil samples with dominant humic-like (HLC) and protein-like (PLC) components were paired with parallel concentration gradients of Ca/Na extractants for equilibrium experiments. Fluorescence-PARAFAC, UV-visible spectroscopy, and multiple statistical analyses were combined for data analysis and interpretation. The results reveal that the primary DOM components remained dominant for specific soil sample, with a higher relative abundance of PLC (HLC) in Ca (Na) extract. HLC preferentially binds to soil phase in all extractions, while PLC is readily released into the solution. However, Ca inhibits HLC desorption and promotes PLC release more significantly than Na, as indicated by stronger ion/proton reaction (IPR) and electrostatic effect (ESE). The strongest IPR and ESE are seen in the HLC-dominated DOM extracted with Ca, suggesting a condition where Ca bridges to HLC and forms total dissolved organic carbon (DOC) that decreases. In contrast, Na extraction exhibits only a weaker ESE that is offset by soil-contained HLC and exchangeable Ca, resulting in subtle DOC decrease. The trends in leaching of HLC and PLC are self-dependent, and the level of variation in either component correlates with the increasing concentration of specific cations present. These findings underscore the crucial role of soil organic matter (SOM) composition and its interaction with leaching cations in soil management in large-scale groundwater irrigation areas, where SOM quality and groundwater chemistry vary.


Asunto(s)
Materia Orgánica Disuelta , Agua Subterránea , Monitoreo del Ambiente , Iones , China , Suelo
9.
Medicine (Baltimore) ; 102(39): e35379, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773816

RESUMEN

To explore the clinical efficacy of atorvastatin administration after surgery in patients with chronic subdural hematoma. We conducted a retrospective study to analyze the clinical data of patients with chronic subdural hematoma. Patients receiving atorvastatin treatment after surgery were divided into the study group while others were divided into the control group. As the primary outcome, we compared the hematoma recurrence rate. The secondary outcomes were the remaining volume of hematoma and the activities of daily living (Barthel index) score at 3 months after discharge. A total of 53 patients were included in the study: 30 patients in the study group (n = 30) and 23 patients in the control group (n = 23). The baseline clinical data were similar in the 2 groups (P > .05). Four patients had recurrence of hematoma in the study group, while 5 patients had recurrence of hematoma in the control group [4/30 (13.3%) versus 5/23 (21.7%), P = .661] at 3 months after discharge. The mean remaining volume of hematoma was 12.10 ±â€…8.80 mL in the study group and 17.30 ±â€…9.50 mL in the control group at 3 months after discharge, respectively. The remaining volume of hematoma in the study group was less than that in the control group (P = .045).The activities of daily living score in the study group were higher than those in the control group (97.83 ±â€…4.48 vs 94.78 ±â€…5.73, P = .034) at 3 months after discharge. Atorvastatin administration after surgery barely reduce the recurrence rate of chronic subdural hematoma, however, reduced the remaining volume of hematoma and improved neurological function.


Asunto(s)
Hematoma Subdural Crónico , Humanos , Atorvastatina/uso terapéutico , Hematoma Subdural Crónico/tratamiento farmacológico , Hematoma Subdural Crónico/cirugía , Estudios Retrospectivos , Actividades Cotidianas , Recurrencia Local de Neoplasia/tratamiento farmacológico , Resultado del Tratamiento , Hematoma/inducido químicamente , Recurrencia
10.
Cell Death Dis ; 14(8): 525, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582769

RESUMEN

Metabolism vulnerability of cisplatin resistance in BCa cells remains to be discovered, which we applied integrated multi-omics analysis to elucidate the metabolism related regulation mechanism in bladder cancer (BCa) microenvironment. Integrated multi-omics analysis of metabolomics and proteomics revealed that MAT2A regulated methionine metabolism contributes to cisplatin resistance in BCa cells. We further validated MAT2A and cancer stem cell markers were up-regulated and circARHGAP10 was down-regulated through the regulation of MAT2A protein stability in cisplatin resistant BCa cells. circARHGAP10 formed a complex with MAT2A and TRIM25 to accelerate the degradation of MAT2A through ubiquitin-proteasome pathway. Knockdown of MAT2A through overexpression of circARHGAP10 and restriction of methionine up-take was sufficient to overcome cisplatin resistance in vivo in immuno-deficiency model but not in immuno-competent model. Tumor-infiltrating CD8+ T cells characterized an exhausted phenotype in tumors with low methionine. High expression of SLC7A6 in BCa negatively correlated with expression of CD8. Synergistic inhibition of MAT2A and SLC7A6 could overcome cisplatin resistance in immuno-competent model in vivo. Cisplatin resistant BCa cells rely on methionine for survival and stem cell renewal. circARHGAP10/TRIM25/MAT2A regulation pathway plays an important role in cisplatin resistant BCa cells while circARHGAP10 and SLC7A6 should be evaluated as one of the therapeutic target of cisplatin resistant BCa.


Asunto(s)
Resistencia a Antineoplásicos , Metionina , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Metionina/metabolismo , Proteómica , Metabolómica , Cisplatino/uso terapéutico , Células Madre Neoplásicas/patología , ARN Circular/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Animales , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Linfocitos T CD8-positivos/inmunología
11.
J Phys Chem Lett ; 14(29): 6532-6541, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37450690

RESUMEN

Organic solar cells (OSCs) have attracted lots of attention owing to their low cost, lightweight, and flexibility properties. Nowadays, the performance of OSCs is continuously improving with the development of active layer materials. However, the traditional hole transport layer (HTL) material Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) presents insufficient conductivity and rapid degradation, which decreases the efficiency and stability of OSCs. To conquer the challenge, the two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanomaterials incorporated into the PEDOT:PSS as hybrid HTL are reported. The addition of g-C3N4 into PEDOT:PSS enables the thickness of the HTL to decrease for enhancing the transmittance of the film and increase the conductivity of PEDOT:PSS. Thus, the device exhibts improved charge transport and suppressed carrier recombination, leading to the increase in short-circuit current density and power conversion efficiency of the devices. This work demonstrates that the incorporation of 2D g-C3N4 into PEDOT:PSS for D18:Y6 and PM6:L8-BO-based OSCs can significantly improve the device efficiency to 17.48% and 18.47% with the enhancement of 7.04% and 8.46%, respectively.

12.
ACS Appl Mater Interfaces ; 15(31): 37554-37562, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522843

RESUMEN

Mg3(Sb1-xBix)2 alloy has been extensively studied in the last 5 years due to its exceptional thermoelectric (TE) performance. The absence of accurate force field for inorganic alloy compounds presents great challenges for computational studies. Here, we explore the atomic microstructure, thermal, and elastic properties of the Mg3(Sb1-xBix)2 alloy at different solution concentrations through atomic simulations with a highly accurate machine learning interatomic potential (ML-IAP). We find atomic local ordering in the optimized structure with the Bi-Bi pair inclined to join adjacent layers and Sb-Sb pair preferring to stay within the same layer. The thermal conductivity changes with the solution concentrations can be correctly predicted through ML-IAP-based molecular dynamics simulations. Spectral thermal conductance analysis shows that the continuous movement of low-frequency peak to high frequency is responsible for the reduction of the thermal conductivity upon alloying. Elastic calculations reveal that similar to the thermal conductivity, solid solution alloying can reduce the overall elastic properties at both Mg3Sb2 and Mg3Bi2 ends, while anisotropic behavior is clearly observed with linear interpolation relationship upon alloying along the interlayer direction and nonlinearity along the intralayer direction. Although the atomic local ordering shows little effects on the properties of the Mg3(Sb1-xBix)2 alloy with only two alloying elements, it possesses potential important impacts on multiprincipal element inorganic TE alloys. This work provides a recipe for computational studies on the TE alloy systems and thus can accelerate the discovery and optimization of TE materials with high TE performance.

13.
Molecules ; 28(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298914

RESUMEN

Traditional organic amines exhibit inferior desorption performance and high regeneration energy consumption. The implementation of solid acid catalysts presents an efficacious approach to mitigate regeneration energy consumption. Thus, investigating high-performance solid acid catalysts holds paramount importance for the advancement and implementation of carbon capture technology. This study synthesized two Lewis acid catalysts via an ultrasonic-assisted precipitation method. A comparative analysis of the catalytic desorption properties was conducted, encompassing these two Lewis acid catalysts and three precursor catalysts. The results demonstrated that the CeO2-γ-Al2O3 catalyst demonstrated superior catalytic desorption performance. Within the desorption temperature range of 90 to 110 °C, the average desorption rate of BZA-AEP catalyzed by the CeO2-γ-Al2O3 catalyst was 87 to 354% greater compared to the desorption rate in the absence of the catalyst, and the desorption temperature can be reduced by approximately 10 °C. A comprehensive analysis of the catalytic desorption mechanism of the CeO2-γ-Al2O3 catalyst was conducted, and indicated that the synergistic effect of CeO2-γ-Al2O3 conferred a potent catalytic influence throughout the entire desorption process, spanning from the rich solution to the lean solution.


Asunto(s)
Óxido de Aluminio , Cerio , Dióxido de Carbono , Ácidos de Lewis , Catálisis
14.
Rev Sci Instrum ; 94(3): 034708, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012823

RESUMEN

The application of high-power solid state amplifiers (SSAs) in accelerator facilities is increasing, and equipment failure caused by reflected power is the main risk to their long-term operation. High-power SSAs often comprise multiple power amplifier modules. Full power reflection is more likely to damage the modules in SSAs if the amplitudes of the modules are unequal. Optimization of the power combiners is an effective means for improving the stability of SSAs under high power reflection. This study analyzes the mechanisms and conditions of reflected power generation using the scattering parameters of the combiner and proposes an optimization scheme for the combiner. The simulation and experimental results show that some modules may receive reflected power as high as nearly four times the rated power of one module when the SSA meets certain conditions, which could damage the modules. The maximum reflected power can be effectively reduced and the anti-reflection ability of SSAs can be improved by optimizing the combiner parameters to suppress the maximum reflected power.

16.
Biochem Biophys Res Commun ; 656: 38-45, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-36947965

RESUMEN

PGM1 is an essential enzyme for glucose metabolism and is involved in cell viability, proliferation, and metabolism. However, the regulatory role of PGMI in glioma progression and the relation between gliomas and PGM1 expression are still unclear. This study aimed to explore the role of PGM1 in glycolysis and oxidative phosphorylation in glioma. Correlation and enrichment analyses of PGM1 in glioma cells were explored in TCGA database and two hospital cohorts. The cell viability, glycolysis, and oxidative phosphorylation were investigated in PGM1 knock-down and overexpression situations. Higher PGM1 expression in glioma patients was associated with a poor survival rate. However, knock-down of PGM1 reduced glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition. Moreover, it suppressed tumor growth in vivo. On the other hand, PGM1 overexpression promoted glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition by a Myc positive feedback loop. Glioma patients with higher PGM1 expression were associated with poor survival rates. Additionally, PGM1 could promote glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition via a myc-positive feedback loop, suggesting PGM1 could be a potential therapeutic target for gliomas.


Asunto(s)
Glioma , Transducción de Señal , Humanos , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Supervivencia Celular , Línea Celular Tumoral , Glioma/patología , Glucosa/metabolismo , Glucólisis , Proliferación Celular
17.
Bioengineering (Basel) ; 10(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36978709

RESUMEN

Background: Bladder cancer (BLCA) is highly heterogeneous with distinct molecular subtypes. This research aimed to investigate the heterogeneity of different molecular subtypes from a tumor microenvironment perspective and develop a molecular-subtype-associated immune prognostic signature that can be recognized by MRI radiomics features. Methods: Individuals with BLCA in The Cancer Genome Atlas (TCGA) and IMvigor210 were classified into luminal and basal subtypes according to the UNC classification. The proportions of tumor-infiltrating immune cells (TIICs) were examined using The Cell Type Identification by Estimating Relative Subsets of RNA Transcripts algorithm. Immune-linked genes that were expressed differentially between luminal and basal subtypes and associated with prognosis were selected to develop the immune prognostic signature (IPS) and utilized for the classification of the selected individuals into low- and high-risk groups. Functional enrichment analysis (GSEA) was performed on the IPS. The data from RNA-sequencing and MRI images of 111 BLCA samples in our center were utilized to construct a least absolute shrinkage and selection operator (LASSO) model for the prediction of patients' IPSs. Results: Half of the TIICs showed differential distributions between the luminal and basal subtypes. IPS was highly associated with molecular subtypes, critical immune checkpoint gene expression, prognoses, and immunotherapy response. The prognostic value of the IPS was further verified through several validation data sets (GSE32894, GSE31684, GSE13507, and GSE48277) and meta-analysis. GSEA revealed that some oncogenic pathways were co-enriched in the group at high risk. A novel performance of a LASSO model developed as per ten radiomics features was achieved in terms of IPS prediction in both the validation (area under the curve (AUC): 0.810) and the training (AUC: 0.839) sets. Conclusions: Dysregulation of TIICs contributed to the heterogeneity between the luminal and basal subtypes. The IPS can facilitate molecular subtyping, prognostic evaluation, and personalized immunotherapy. A LASSO model developed as per the MRI radiomics features can predict the IPSs of affected individuals.

18.
Heliyon ; 9(1): e13012, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704283

RESUMEN

Recent evidence suggests that the human genitourinary microbiome plays a significant role in mediating the development and progression of urological tumors, including bladder cancer (BC). Clinicians widely recognize the role of Bacille Calmette Guérin (BCG), an attenuated Mycobacterium tuberculosis vaccine, in the management of intermediate- and high-risk NMIBC. However, compared to the large body of evidence on the gut microbiota and gastrointestinal tumors, limited information is available about the interaction between BC and the genitourinary microbiome. This is an expanding field that merits further investigation. Urologists will need to consider the potential impact of the microbiome in BC diagnosis, prevention of recurrence and progression, and treatment prospects in the future. This review highlights the approaches adopted for microbiome research and the findings and inadequacies of current research on BC.

19.
Mol Carcinog ; 62(2): 185-199, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36250643

RESUMEN

The relationship between metabolism and immune microenvironment remains to be studied in bladder cancer (BCa). We aimed to construct a metabolic-associated signature for prognostic prediction and investigate its relationship with the immune microenvironment in BCa. The RNA expression of metabolism associated genes was obtained from a combined data set including The Cancer Genome Atlas, GSE48075, and GSE13507 to divide BCa patients into different clusters. A metabolic-associated signature was constructed using the differentially expressed genes between clusters in the combined data set and validated in the IMvigor210 trial and our center. The composition of tumor-infiltrating immune cells (TIICs) was evaluated using the single-sample Gene Set Variation Analysis. BCa patients in Cluster A or high-risk level were associated with advanced clinicopathological features and poor survival outcomes. The percentage of high-risk patients was significantly lower in patients responding to anti-PD-L1 treatment. Compared with low-risk patients, the IC50 values of cisplatin and gemcitabine were significantly lower in high-risk patients. Thiosulfate transferase (TST) and S100A16 were significantly associated with clinicopathological features and prognosis. Downregulation of TST promoted BCa cell invasion, migration, and epithelial-to-mesenchymal transition, which are inhibited by downregulation of S100A16. CD8 + T cells, neutrophils, and dendritic cells had higher infiltration in the TST low-level and the S100A16 high-level. Furthermore, loss of function TST and S100A16 significantly affected the expression of PD-L1 and CD47. The metabolic-associated signature can stratify BCa patients into distinct risk levels with different immunotherapeutic susceptibility and survival outcomes. Metabolism disorder promoted the dysregulation of immune microenvironment, thus contributing to immunosuppression.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Regulación hacia Abajo , Cisplatino , Linfocitos T CD8-positivos , Transición Epitelial-Mesenquimal , Microambiente Tumoral/genética
20.
IEEE Trans Cybern ; 53(10): 6612-6625, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36306310

RESUMEN

This study proposes a minimum cost consensus-based failure mode and effect analysis (MCC-FMEA) framework considering experts' limited compromise and tolerance behaviors, where the first behavior indicates that a failure mode and effect analysis (FMEA) expert might not tolerate modifying his/her risk assessment without limitations, and the second behavior indicates that an FMEA expert will accept risk assessment suggestions without being paid for any cost if the suggested risk assessments fall within his/her tolerance threshold. First, an MCC-FMEA with limited compromise behaviors is presented. Second, experts' tolerance behaviors are added to the MCC-FMEA with limited compromise behaviors. Theoretical results indicate that in some cases, this MCC-FMEA with limited compromise and tolerance behaviors has no solution. Thus, a minimum compromise adjustment consensus model and a maximum consensus model with limited compromise behaviors are developed and analyzed, and an interactive MCC-FMEA framework, resulting in an FMEA problem consensual collective solution, is designed. A case study, regarding the assessment of COVID-19-related risk in radiation oncology, and a detailed sensitivity and comparative analysis with the existing FMEA approaches are provided to verify the effectiveness of the proposed approach to FMEA consensus-reaching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA