Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 1010-1015, 2024 Aug 10.
Artículo en Chino | MEDLINE | ID: mdl-39097288

RESUMEN

DNA methylation is an important epigenetic regulatory mechanism which plays a crucial role in cell differentiation and development. Its function is closely related to DNA methyltransferase 3 alpha (DNMT3A), which can affect gene expression and stem cell differentiation. The mutation rate of the DNMT3A gene is relatively high in Acute myeloid leukemia (AML), but its type and pathogenic mechanism are not yet clear. Further research on DNMT3A may help to identify its pathogenic targets and provide a basis for precise treatment of AML. This article has provided a review for the research progress on the expression of the DNMT3A gene in AML.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Leucemia Mieloide Aguda , ADN (Citosina-5-)-Metiltransferasas/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/enzimología , Metilación de ADN , Regulación Leucémica de la Expresión Génica
2.
Biochem Biophys Res Commun ; 737: 150467, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39133984

RESUMEN

In general, Cu(II) is the critical factor in catalyzing reactive oxygen species (ROS) production and accelerating amyloid-ß (Aß) oligomer formation in Alzheimer's disease (AD). Natural chelating agents with good biocompatibility and appropriate binding affinity with Cu(II) have emerged as potential candidates for AD therapy. Herein, we tested the capability of guluronic acid disaccharide (Di-GA), a natural chelating agent with the moderate association affinity to Cu(II), in inhibiting ROS production and Aß oligomer formation. The results showed that Di-GA was capable of chelating with Cu(II) and reducing ROS production, even in solutions containing Fe(II), Zn(II), and Aß. In addition, Di-GA can also capture Cu(II) from Cu-Aß complexes and decrease Aß oligomer formation. The cellular results confirmed that Di-GA prevented SH-SY5Y cells from ROS and Aß oligomer damage by reducing the injury of ROS and Aß oligomers on cell membrane and decreasing their intracellular damage on mitochondria. Notably, the slightly higher efficiency of Di-GA in chelating with Cu(I) than Cu(II) can be benefit for its in vivo applications, as Cu(I) is not only the most active but also the special intermediate specie during ROS production process. All of these results proved that Di-GA could be a promising marine drug candidate in reducing copper-related ROS damage and Aß oligomer toxicity associated with AD.

3.
Environ Pollut ; 358: 124506, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968983

RESUMEN

Short-term exposure to ozone has been linked to multiple allergic diseases, but the relationship between ozone exposure and allergic conjunctivitis (AC) remains unclear. This study aimed to investigate the association between short-term exposure to ozone and the risk of AC. We conducted a time-stratified case-crossover study across five Chinese cities from 2014 to 2022. Daily outpatient visit records for AC were identified in five hospitals using either the diagnosis name or ICD-10 code H10.1. Data on air pollution and meteorological conditions were also collected. We first examined the city-specific association between short-term ozone exposure and AC using conditional logistic regression. A random-effects meta-analysis was then conducted to obtain overall estimates. During the study period, 130,093 outpatient visits for AC occurred, with 58.8% (76,482) being male and 41.2% (53,611) female. A one-standard-deviation (SD) increase in ozone was associated with an 8.3% increase (95% CI: 3.8%, 13.0%) in AC outpatient visits. Similar positive associations were observed when adjusting for other pollutants (PM2.5, CO, SO2 and NO2) in two-pollutant and multi-pollutant models. Furthermore, the positive association remained consistent when using mixed-effects regression models or further adjusting for meteorological conditions. In addition, no effect modification of the AC-ozone association by sex, age and season was apparent. This study provides evidence supporting a positive association between short-term ozone exposure and AC risk in China. This highlights the potential value of mitigating ozone pollution to reduce the risk of ocular surface disorders.

4.
World J Gastrointest Surg ; 16(6): 1592-1600, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983330

RESUMEN

BACKGROUND: Malignant obstructive jaundice (MOJ) is a condition characterized by varying degrees of bile duct stenosis and obstruction, accompanied by the progressive development of malignant tumors, leading to high morbidity and mortality rates. Currently, the two most commonly employed methods for its management are percutaneous transhepatic bile duct drainage (PTBD) and endoscopic ultrasound-guided biliary drainage (EUS-BD). While both methods have demonstrated favorable outcomes, additional research needs to be performed to determine their relative efficacy. AIM: To compare the therapeutic effectiveness of EUS-BD and PTBD in treating MOJ. METHODS: This retrospective analysis, conducted between September 2015 and April 2023 at The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), involved 68 patients with MOJ. The patients were divided into two groups on the basis of surgical procedure received: EUS-BD subgroup (n = 33) and PTBD subgroup (n = 35). Variables such as general data, preoperative and postoperative indices, blood routine, liver function indices, myocardial function indices, operative success rate, clinical effectiveness, and complication rate were analyzed and compared between the subgroups. RESULTS: In the EUS-BD subgroup, hospital stay duration, bile drainage volume, effective catheter time, and clinical effectiveness rate were superior to those in the PTBD subgroup, although the differences were not statistically significant (P > 0.05). The puncture time for the EUS-BD subgroup was shorter than that for the PTBD subgroup (P < 0.05). Postoperative blood routine, liver function index, and myocardial function index in the EUS-BD subgroup were significantly lower than those in the PTBD subgroup (P < 0.05). Additionally, the complication rate in the EUS-BD subgroup was lower than in the PTBD subgroup (P < 0.05). CONCLUSION: EUS-BD may reduce the number of punctures, improve liver and myocardial functions, alleviate traumatic stress, and decrease complication rates in MOJ treatment.

5.
BMC Plant Biol ; 24(1): 714, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060979

RESUMEN

BACKGROUND: Festuca kryloviana is a significant native grass species in the Qinghai Lake region, and its low emergence rate is a primary factor limiting the successful establishment of cultivated grasslands. The region's arid and low-rainfall climate characteristics result in reduced soil moisture content at the surface. Despite the recognized impact of water availability on plant growth, the specific role of moisture in seedling development remains not fully elucidated. This study aims to investigate the germination rate and seedling growth velocity of F. kryloviana seeds under varying moisture conditions, and to integrate physiological and transcriptomic analyses of seedlings under these conditions to reveal the mechanisms by which water influences seedling development. RESULTS: The emergence rate of F. kryloviana seedlings exhibited an initial increase followed by a decrease with increasing moisture content. The highest emergence rate, reaching 75%, was observed under 20% soil moisture conditions. By the eighth day of the experiment, the lengths of the plumules and radicles under the optimal emergence rate (full water, FW) were 21.82% and 10.87% longer, respectively, than those under closely matching the soil moisture content during the background survey (stress water, SW). The differential development of seedlings under varying moisture regimes is attributed to sugar metabolism within the seeds and the accumulation of abscisic acid (ABA). At FW conditions, enhanced sugar metabolism, which generates more energy for seedling development, is facilitated by higher activities of α-amylase, sucrose synthase, and trehalose-6-phosphate synthase compared to SW conditions. This is reflected at the transcriptomic level with upregulated expression of the α-amylase (AMY2) gene and trehalose-6-phosphate synthase (TPS6), while genes associated with ABA signaling and transduction are downregulated. Additionally, under FW conditions, the expression of genes related to the chloroplast thylakoid photosystems, such as photosystem II (PSII) and photosystem I (PSI), is upregulated, enhancing the seedlings' light-capturing ability and photosynthetic efficiency, thereby improving their autotrophic capacity. Furthermore, FW treatment enhances the expression of the non-enzymatic antioxidant system, promoting metabolism within the seeds. In contrast, SW treatment increases the activity of the enzymatic antioxidant system, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), to cope with water stress. CONCLUSIONS: Our experiment systematically evaluated the impact of moisture conditions on the growth and development of F. kryloviana seedlings. Physiological and transcriptomic data collectively indicate that adequate water (20%) supply enhances seedling growth and development by reducing ABA levels and increasing α-amylase activity within seeds, thereby boosting sugar metabolism and promoting the growth of seedling, which in turn leads to an improved emergence rate. Considering water management in future cultivation practices may be a crucial strategy for enhancing the successful establishment of F. kryloviana in grassland ecosystems.


Asunto(s)
Festuca , Plantones , Agua , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/metabolismo , Agua/metabolismo , Transcriptoma , Germinación , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo
6.
Front Neurol ; 15: 1405694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974683

RESUMEN

Objective: According to data from several observational studies, there is a strong association between circulating inflammatory cytokines and postherpetic neuralgia (PHN), but it is not clear whether this association is causal or confounding; therefore, the main aim of the present study was to analyze whether circulating inflammatory proteins have a bidirectional relationship with PHN at the genetic inheritance level using a Mendelian randomization (MR) study. Methods: The Genome-Wide Association Study (GWAS) database was used for our analysis. We gathered data on inflammation-related genetic variation from three GWASs of human cytokines. These proteins included 91 circulating inflammatory proteins, tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein 1b (MIP-1b), and CXC chemokine 13 (CXCL13). The PHN dataset was obtained from the FinnGen biobank analysis round 5, and consisted of 1,413 cases and 275,212 controls. We conducted a two-sample bidirectional MR study using the TwoSampleMR and MRPRESSO R packages (version R.4.3.1). Our main analytical method was inverse variance weighting (IVW), and we performed sensitivity analyses to assess heterogeneity and pleiotropy, as well as the potential influence of individual SNPs, to validate our findings. Results: According to our forward analysis, five circulating inflammatory proteins were causally associated with the development of PHN: interleukin (IL)-18 was positively associated with PHN, and IL-13, fibroblast growth factor 19 (FGF-19), MIP-1b, and stem cell growth factor (SCF) showed reverse causality with PHN. Conversely, we found that PHN was closely associated with 12 inflammatory cytokines, but no significant correlation was found among the other inflammatory factors. Among them, only IL-18 had a bidirectional causal relationship with PHN. Conclusion: Our research advances the current understanding of the role of certain inflammatory biomarker pathways in the development of PHN. Additional verification is required to evaluate the viability of these proteins as targeted inflammatory factors for PHN-based treatments.

7.
J Ethnopharmacol ; 334: 118523, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969149

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY: To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS: Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS: Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION: The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Emodina , Fallopia multiflora , Animales , Humanos , Masculino , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Emodina/farmacología , Fallopia multiflora/química , Granzimas/metabolismo , Granzimas/genética , Antígeno HLA-B35 , Interferón gamma/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/inmunología , Hígado/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
8.
Front Plant Sci ; 15: 1375166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938644

RESUMEN

Introduction: Biological nitrogen fixation (BNF) plays a crucial role in nitrogen utilization in agroecosystems. Functional characteristics of plants (grasses vs. legumes) affect BNF. However, little is still known about how ecological zones and cropping patterns affect legume nitrogen fixation. This study's objective was to assess the effects of different cropping systems on aboveground dry matter, interspecific relationships, nodulation characteristics, root conformation, soil physicochemistry, BNF, and nitrogen transfer in three ecological zones and determine the main factors affecting nitrogen derived from the atmosphere (Ndfa) and nitrogen transferred (Ntransfer). Methods: The 15N labeling method was applied. Oats (Avena sativa L.), forage peas (Pisum sativum L.), common vetch (Vicia sativa L.), and fava beans (Vicia faba L.) were grown in monocultures and mixtures (YS: oats and forage peas; YJ: oats and common vetch; YC: oats and fava beans) in three ecological regions (HZ: Huangshui Valley; GN: Sanjiangyuan District; MY: Qilian Mountains Basin) in a split-plot design. Results: The results showed that mixing significantly promoted legume nodulation, optimized the configuration of the root system, increased aboveground dry matter, and enhanced nitrogen fixation in different ecological regions. The percentage of nitrogen derived from the atmosphere (%Ndfa) and percentage of nitrogen transferred (%Ntransfer) of legumes grown with different legume types and in different ecological zones were significantly different, but mixed cropping significantly increased the %Ndfa of the legumes. Factors affecting Ndfa included the cropping pattern, the ecological zone (R), the root nodule number, pH, ammonium-nitrogen, nitrate-nitrogen, microbial nitrogen mass (MBN), plant nitrogen content (N%), and aboveground dry biomass. Factors affecting Ntransfer included R, temperature, altitude, root surface area, nitrogen-fixing enzyme activity, organic matter, total soil nitrogen, MBN, and N%. Discussion: We concluded that mixed cropping is beneficial for BNF and that mixed cropping of legumes is a sustainable and effective forage management practice on the Tibetan Plateau.

9.
Phytomedicine ; 132: 155834, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38941818

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) poses a significant global public health concern. Liupao tea (LPT) is a Chinese national geographical indication product renowned for its lipid-lowering properties. However, the precise mechanisms and active constituents contributing to the efficacy of LPT against NAFLD remain unclear. PURPOSE: This study aims to comprehensively explore the therapeutic potential of Liupao tea extract (LPTE) in alleviating NAFLD through an integrated strategy. METHODS: Initially, network pharmacology analysis was conducted based on LPTE chemical ingredient analysis, identifying core targets and key components. Potential active ingredients were validated through chemical standards based on LC-MS/MS. To confirm the pharmacological efficacy of LPTE in NAFLD, NAFLD mice models were employed. Alterations in hepatic lipid metabolism were comprehensively elucidated through integration of metabolomics, lipidomics, network pharmacology analysis, and real-time PCR analysis. To further explore the binding interactions between key components and core targets, molecular docking and microscale thermophoresis (MST) analysis were employed. Furthermore, to investigate LPTE administration effectiveness on gut microbiota in NAFLD mice, a comprehensive approach was employed. This included Metorigin analysis, 16S rRNA sequencing, molecular docking, and fecal microbiome transplantation (FMT). RESULTS: Study identified naringenin, quercetin, luteolin, and kaempferol as the potential active ingredients of LPTE. These compounds exhibited therapeutic potential for NAFLD by targeting key proteins such as PTGS2, CYP3A4, and ACHE, which are involved in the metabolic pathways of hepatic linoleic acid (LA) and glycerophospholipid (GP) metabolism. The therapeutic effectiveness of LPTE was observed to be comparable to that of simvastatin. Furthermore, LPTE exhibited notable efficacy in alleviating NAFLD by influencing alterations in gut microbiota composition (Proteobacteria phylum, Lactobacillus and Dubosiella genus) that perhaps impact LA and GP metabolic pathways. CONCLUSION: LPTE could be effective in preventing high-fat diet (HFD)-induced NAFLD by modulating hepatic lipid metabolism and gut microbiota. This study firstly integrated bioinformatics and multi-omics technologies to identify the potential active components and key microbiota associated with LPTE's effects, while also primally elucidating the action mechanisms of LPTE in alleviating NAFLD. The findings offer a conceptual basis for LPTE's potential transformation into an innovative pharmaceutical agent for NAFLD prevention.

10.
Int J Biol Macromol ; 273(Pt 2): 132807, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825289

RESUMEN

It is well known that Rosa roxburghii, as a homology of both medicine and food, is rich in polysaccharides. To discover bioactive macromolecules for combating cancer, the polysaccharides in R. roxburghii were investigated, leading to the purification of a polysaccharide (RRTP80-1). RRTP80-1 was measured to have an average molecular weight of 8.65 × 103 g/mol. Monosaccharide composition analysis revealed that RRTP80-1 was formed from three types of monosaccharides including arabinose, glucose, and galactose. Methylation and GC-MS analysis suggested that the backbone of RRTP80-1 consisted of →5)-α-l-Araf-(1→, →6)-α-d-Glcp-(1→, →2,5)-α-l-Araf-(1→, →4,6)-ß-d-Galp-(1→, and →3)-α-l-Araf-(1→, with branch chains composed of α-l-Araf-(1→. In vivo studies indicated that RRTP80-1 exhibited inhibitory activity against the growth and proliferation of neoplasms in the zebrafish tumor xenograft model by suppressing angiogenesis. Additionally, RRTP80-1 was found to upregulate reactive oxygen species (ROS) and nitric oxide (NO) production levels in zebrafish models. All these studies suggest that RRTP80-1 activates the immune system to inhibit tumors. The potential role of the newly discovered homogeneous polysaccharide RRTP80-1 in cancer treatment was preliminarily clarified in this study.


Asunto(s)
Monosacáridos , Polisacáridos , Rosa , Pez Cebra , Rosa/química , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Animales , Humanos , Monosacáridos/análisis , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Peso Molecular , Metilación , Óxido Nítrico/metabolismo
11.
Arch Oral Biol ; 165: 106028, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908074

RESUMEN

OBJECTIVE: This study was designed to investigate the biological role and the reaction mechanism of Tweety family member 3 (TTYH3) in oral squamous cell carcinoma (OSCC). DESIGN: The mRNA and protein expressions of TTYH3 were assessed with RT-qPCR and western blot. After silencing TTYH3 expression, the proliferation of OSCC cells were detected using cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining and colony formation assay. Cell migration and invasion were detected using wound healing and transwell. Gelatin zymography protease assay was used to detect matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-2 (MMP9) activity and western blot was used to detect the expressions of proteins associated with proliferation and epithelial-mesenchymal transition (EMT). The mRNA expression of TTYH3 in THP-1-derived macrophage was detected using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). The number of CD86-positive cells and CD206-positive cells was detected using immunofluorescence assay. RT-qPCR was used to detect the expressions of M2 markers arginase 1 (ARG1), chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1). RESULTS: In this study, it was found that TTYH3 expression was upregulated in OSCC cell lines and TTYH3 knockdown could inhibit the proliferation, migration, invasion and EMT process in OSCC via suppressing M2 polarization of tumor-associated macrophages. CONCLUSIONS: Collectively, TTYH3 facilitated the progression of OSCC through the regulation of tumor-associated macrophages polarization.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Neoplasias de la Boca , Macrófagos Asociados a Tumores , Humanos , Western Blotting , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Macrófagos Asociados a Tumores/metabolismo
12.
Mol Biol Rep ; 51(1): 755, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874707

RESUMEN

BACKGROUND: Cataract contributes to visual impairment worldwide, and diabetes mellitus accelerates the formation and progression of cataract. Here we found that the expression level of miR-204-5p was diminished in the lens epithelium with anterior lens capsule of cataract patients compared to normal donors, and decreased more obviously in those of diabetic cataract (DC) patients. However, the contribution and mechanism of miR-204-5p during DC development remain elusive. METHODS AND RESULT: The mitochondrial membrane potential (MMP) was reduced in the lens epithelium with anterior lens capsule of DC patients and the H2O2-induced human lens epithelial cell (HLEC) cataract model, suggesting impaired mitochondrial functional capacity. Consistently, miR-204-5p knockdown by the specific inhibitor also attenuated the MMP in HLECs. Using bioinformatics and a luciferase assay, further by immunofluorescence staining and Western blot, we identified IGFBP5, an insulin-like growth factor binding protein, as a direct target of miR-204-5p in HLECs. IGFBP5 expression was upregulated in the lens epithelium with anterior lens capsule of DC patients and in the HLEC cataract model, and IGFBP5 knockdown could reverse the mitochondrial dysfunction in the HLEC cataract model. CONCLUSIONS: Our results demonstrate that miR-204-5p maintains mitochondrial functional integrity through repressing IGFBP5, and reveal IGFBP5 may be a new therapeutic target and prognostic factor for DC.


Asunto(s)
Catarata , Complicaciones de la Diabetes , Células Epiteliales , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina , MicroARNs , Mitocondrias , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Catarata/genética , Catarata/metabolismo , Catarata/patología , Mitocondrias/metabolismo , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Células Epiteliales/metabolismo , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Potencial de la Membrana Mitocondrial , Cristalino/metabolismo , Cristalino/patología , Masculino , Femenino , Persona de Mediana Edad
13.
Chem Commun (Camb) ; 60(50): 6435-6438, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829288

RESUMEN

Herein, a covalent organic framework (SO3-COF) containing sulfonic acid groups has been developed on the surface of alumina by a one-step method, labeled as SO3-COF@Al2O3. The experimental results show that SO3-COF@Al2O3 can effectively inhibit the shuttle effect of soluble lithium polysulfide (LiPSs) in LSBs after loading the active material sulfur, and exhibits better cycling behavior than the initial polymer SO3-COF. The initial discharge specific capacity of this electrode material at 0.05C is as high as 1141 mA h g-1, and the capacity can be maintained at 466 mA h g-1 after 500 cycles with a capacity decay rate of 0.08% per cycle.

14.
Clin Genitourin Cancer ; 22(4): 102095, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833825

RESUMEN

INTRODUCTION BACKGROUND: Disulfidptosis is a prevalent apoptotic mechanism, intrinsically linked to cancer prognosis. However, the specific involvement of disulfidptosis-related long non-coding RNA (DRLncRNAs) in Kidney renal clear cell carcinoma (KIRC) remains incompletely understood. This study aims to elucidate the potential prognostic significance of disulfidptosis-related LncRNAs in KIRC. MATERIALS AND METHODS: Expression profiles and clinical data of KIRC patients were retrieved from the TCGA database to discern differentially expressed DRLncRNAs correlated with overall survival. Cox univariate analysis, Lasso Regression, and Cox multivariate analysis were used to construct a clinical prediction model. RESULTS: Six signatures, namely FAM83C.AS1, AC136475.2, AC121338.2, AC026401.3, AC254562.3, and AC000050.2, were established to evaluate overall survival (OS) in the context of Kidney renal clear cell carcinoma (KIRC) in this study. Survival analysis and ROC curves demonstrated the strong predictive performance of the associated signature. The nomogram exhibited accurate prognostic predictions for overall patient survival, offering substantial clinical utility. Gene set enrichment analysis revealed that risk signals were enriched in various immune-related pathways. Furthermore, the risk features exhibited significant correlations with immune cells, immune function, immune cell infiltration, and immune checkpoints. CONCLUSION: This study has unveiled, for the first time, six disulfdptosis-related LncRNA signatures, laying a solid foundation for enhanced and precise prognostic predictions in KIRC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/mortalidad , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/mortalidad , Pronóstico , Masculino , Femenino , Biomarcadores de Tumor/genética , Nomogramas , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Apoptosis , Análisis de Supervivencia
15.
Molecules ; 29(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38893486

RESUMEN

Understanding the optimal extraction methods for flavonoids from Abelmoschus manihot flowers (AMF) is crucial for unlocking their potential benefits. This study aimed to optimize the efficiency of flavonoid extraction from AMF. After comparing extraction methods, the ultrasonic cell crusher demonstrated superior performance over conventional techniques. Four key factors-solid-to-liquid ratio (1:10 to 1:50 g·mL-1), ethanol concentration (55% to 95%), ultrasonic time (10 to 50 min), and ultrasonic power (5% to 25% of 900 W)-were investigated and normalized using the entropy weight method. This led to a comprehensive evaluation (CE). Optimization of extraction conditions for the ultrasonic cell crusher was achieved through response surface methodology and a deep neural network model, resulting in optimal parameters: ethanol volume fraction of 66%, solid-to-liquid ratio of 1:21 g/mL, extraction efficiency of 9%, and extraction duration of 35 min, yielding a CE value of 23.14 (RSD < 1%). Additionally, the inhibitory effects of the optimized extracts against Streptococcus mutans (S. mutans) were assessed. The results revealed that AMF extract (AMFE) exhibits inhibitory effects on S. mutans, with concomitant inhibition of sucrase and lactate dehydrogenase (LDH). The MIC of AMFE against planktonic S. mutans is 3 mg/mL, with an MBC of 6 mg/mL. Within the concentration range of 1/8 MIC to 2 MIC of AMFE, the activities of sucrase and LDH decreased by 318.934 U/mg prot and 61.844 U/mg prot, respectively. The antioxidant activity of AMFE was assessed using the potassium ferricyanide reduction and phosphomolybdenum methods. Additionally, the effect of AMFE on DPPH, ABTS, and ·OH free radical scavenging abilities was determined. The concentrations at which AMFE exhibited over 90% scavenging rate for ABTS and DPPH free radicals were found to be 0.125 mg/mL and 2 mg/mL, respectively.


Asunto(s)
Abelmoschus , Antioxidantes , Flavonoides , Flores , Redes Neurales de la Computación , Extractos Vegetales , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Abelmoschus/química , Flores/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Ondas Ultrasónicas
16.
Onco Targets Ther ; 17: 471-487, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895133

RESUMEN

Introduction: Non-small cell lung cancer (NSCLC) stands as one of the most prevalent malignancies, and chemotherapy remains the primary treatment for advanced stages. However, the high expression of ABC binding cassette transporters, including MRP, P-gp, and LRP, along with multidrug resistance proteins, has been identified as a significant factor contributing to decreased chemotherapy drug sensitivity. This study aims to explore the impact and underlying mechanisms of Curculiginis Rhizoma [Hypoxidaceae; Curculigo orchioides Gaertn.] (CR) in combination with cisplatin on improving chemoresistance mediated by ABC binding cassette transporters and multidrug resistance proteins in NSCLC. Methods and Results: To unravel the relationship between JNK, MRP, P-gp, and LRP in NSCLC and gain insights into the regulatory mechanism of CR, this study employs an integrated approach encompassing bioinformatics, molecular docking, molecular dynamics, animal and cellular experiments. Bioinformatics analysis revealed a significant increase in the expression levels of JNK, MRP, P-gp, and LRP subtypes in multidrug-resistant non-small cell lung cancer. Subsequent animal experiments have shown that the combination of CR with cisplatin can improve the survival rate of lung cancer mice. Molecular docking and molecular dynamics analyses demonstrated favorable binding interactions between curculigoside and the aforementioned subtypes of JNK, MRP, P-gp, and LRP. In cellular experiments, the combination of cisplatin with both curculigoside and CR extract resulted in a notable decrease in cell viability and downregulation of the expression of JNK1, JNK2, MRP1, MRP2, MRP4, P-gp, and LRP1 in A549/cis cells. Conclusion: Remarkably, curculigoside exerted a significant downregulation effect on the expression levels of JNK1, MRP1, MRP2, MRP4, and LRP1. CR, particularly its main effective metabolite, curculigoside, has the potential to enhance the sensitivity of non-small cell lung cancer to cisplatin by regulating levels of JNK/MRP/LRP/P-gp and mitigating multidrug resistance.

18.
Front Public Health ; 12: 1353890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818443

RESUMEN

Objective: In this study, we aim to provide a comprehensive analysis of the effectiveness of the risk prevention and control mechanism within the grid management model for community risk prevention. We emphasize the importance of thoroughly examining the risk prevention and control mechanism to enhance risk management efforts in urban communities, particularly in response to unforeseen outbreaks such as COVID-19. Methods: Case studies are widely acknowledged as one of the most effective approaches to examine governance in China. In this study, the "Yuelu Model" serves as an illustrative example to demonstrate the application and effectiveness of grid management in community risk governance. To ensure the validity of the case study, it is imperative to adhere to the principle of representativeness. The collection of case data involves a combination of primary and secondary sources, and supplementary information is obtained through follow-up investigations conducted via WeChat, telephone, and other means, thereby enhancing the comprehensiveness and accuracy of the data. Results: Our analysis reveals significant findings regarding the impact of the grid management model, fulfilling a triple role as a "Social Safety Valve" in the management process: (1) Community stress reduction function, (2) Community alarm function, and (3) Community integration function. Furthermore, we explore the adaptability of the grid management mechanism in addressing community risks, highlighting its effectiveness and potential for broader application. Discussion: The findings of this study suggest that: Firstly, it is crucial to establish a shared information repository among different departments on a big data platform. Secondly, a dynamic government public information internal network should be established through collaborative efforts among multiple departments. Thirdly, implementing a regular (or periodic) early warning mechanism is essential. Lastly, the establishment of a high-quality talent team for power grid management is highly recommended. Our research provides valuable insights to enhance community risk governance.


Asunto(s)
COVID-19 , Gestión de Riesgos , China , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Estudios de Casos Organizacionales
19.
Int J Biol Macromol ; 272(Pt 1): 132543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788870

RESUMEN

Some macrofungi have a long history of being used as traditional or folk medicines, making significant contributions to human health. To discover bioactive molecules with potential anticancer properties, a homogeneous heteropolysaccharide (FOBP90-1) was purified from the medicinal macrofungus Fomitopsis officinalis. FOBP90-1 was found to have a molecular weight of 2.87 × 104 g/mol and mainly consist of →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, →6)-ß-d-Glcp-(1→, α-d-Manp-(1→, and 3-O-Me-α-l-Fucp-(1→ according to UV, FT-IR, methylation analysis, and NMR data. In addition to its structural properties, FOBP90-1 displayed anticancer activity in zebrafish models. The following mechanistic analysis discovered that the in vivo antitumor effect was linked to immune activation and angiogenesis inhibition. These effects were mediated by the interactions of FOBP90-1 with TLR-2, TLR-4, PD-L1, and VEGFR-2, as determined through a series of experiments involving cells, transgenic zebrafish, molecular docking simulations, and surface plasmon resonance (SPR). All the experimental findings have demonstrated that FOBP90-1, a purified fungal polysaccharide, is expected to be utilized as a cancer treatment agent.


Asunto(s)
Antineoplásicos , Coriolaceae , Polisacáridos Fúngicos , Pez Cebra , Animales , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Humanos , Coriolaceae/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Simulación del Acoplamiento Molecular
20.
Front Plant Sci ; 15: 1370593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742217

RESUMEN

Establishing cultivated grassland in the Qinghai-Tibet Plateau region is an effective method to address the conflict between vegetation and livestock. However, the high altitude, low temperature, and arid climate in the region result in slow regeneration and susceptibility to degradation of mixed cultivation grassland containing perennial legumes and gramineous plants. Therefore, we aim to through field experiments, explore the feasibility of establishing mixed cultivation grassland of Poaceae species in the region by utilizing two grass species, Poa pratensis L. and Puccinellia tenuiflora. By employing a mixture of P. pratensis and P. tenuiflora to establish cultivated grassland, we observed significant changes in forage yield over time. Specifically, during the 3rd to 6th years of cultivation, the yield in the mixed grassland was higher than in monocultures. It exceeded the yield of monoculture P. tenuiflora by 19.38% to 29.14% and surpassed the monoculture of P. pratensis by 17.18% to 62.98%. Through the analysis of soil physicochemical properties and soil microbial communities in the cultivated grassland, the study suggests that the mixed grassland with Poaceae species can enhance soil enzyme activity and improve soil microbial communities. Consequently, this leads to increased soil nutrient levels, enhanced nitrogen fixation efficiency, and improved organic phosphorus conversion efficiency. Therefore, establishing mixed grasslands with Poaceae species in the Qinghai-Tibet Plateau region is deemed feasible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA