Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135080, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38996676

RESUMEN

The current carbon dioxide (CO2) evolution-based standard method for determining biodegradable microplastics (MPs) degradation neglects its priming effect on soil organic matter decomposition, which misestimates their biodegradability. Here, a 13C natural abundance method was used to estimate the mineralization of poly(lactic acid) (PLA) MP in various agricultural soils, and to trace its utilization in different microbial groups. In alkaline soils, the PLA-derived CO2 emissions increased with increasing soil carbon/nitrogen (C/N) ratios, and the mineralization of PLA MP concentrations ranged from 3-33 %, whereas the CO2 evolution method probably over- or under-estimated the mineralization of PLA in alkaline soils with different soil C/N ratios. Low PLA mineralization (1-5 %) were found in the acidic soil, and the standard method largely overestimated the mineralization of PLA MP by 1.3- to 3.3-fold. Moreover, the hydrolysate of PLA MP was preferentially assimilated by Gram-negative bacteria, but Gram-positive bacterial decomposition mainly contributed to the release of PLA-derived CO2 at low MP concentrations (≤ 1 %). Overall, the 13C natural abundance method appears to be suitable for tracking the mineralization and microbial utilization of biodegradable PLA in soils, and the PLA-derived C is mainly assimilated and decomposed by bacterial groups.

2.
ACS Appl Mater Interfaces ; 16(28): 36811-36820, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38961726

RESUMEN

Perovskite quantum dots (PQDs) have attracted emerging attention as fluorescent and light-absorbing materials for next-generation optoelectronics due to their outstanding properties and cost-efficiency. However, PQD thin film suffers significant instability due to structure and material failures, which hinders their application in flexible and reliable PQD-based advanced wearable devices. Herein, we use commercial cellulose fiber-based filter paper as a substrate to synthesize PQDs in situ and fabricate PQD-paper free-standing flexible composite film. The abundant hydroxy capping ligands of cellulose fibers and the unique dense network structure of the filter paper can facilitate confined crystallization, forming strong interactions between the PQDs and substrate, the unpackaged PQD composite film showed extraordinary stability (>30 days) in the air with high humidity (90%). Meanwhile, the strong interaction between PQDs and paper enables an ultrasimple drop-cast synthesis process with excellent process tolerance, making it customizable and easy to scale up (10 cm in diameter). Due to the uniformly dispersed PQDs on cellulose fibers of the substrate, the composite demonstrates impressive photo-responsive properties. Photodetector (PD) arrays were designed on free-standing PQD paper and flexible graphitic electrodes, and circuits were fabricated by drawing. The PD arrays can work as optical and electrical dual-mode image sensors with incredible bending robustness, enduring up to 100,000 cycles at 180°.

3.
Environ Pollut ; 357: 124402, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906405

RESUMEN

Excess nitrogen and phosphorus inputs are the main causes of aquatic environmental deterioration. Accurately quantifying and dynamically assessing the regional nitrogen and phosphorus pollution emission (NPPE) loads and influencing factors is crucial for local authorities to implement and formulate refined pollution reduction management strategies. In this study, we constructed a methodological framework for evaluating the spatio-temporal evolution mechanism and dynamic simulation of NPPE. We investigated the spatio-temporal evolution mechanism and influencing factors of NPPE in the Yangtze River Economic Belt (YREB) of China through the pollution load accounting model, spatial correlation analysis model, geographical detector model, back propagation neural network model, and trend analysis model. The results show that the NPPE inputs in the YREB exhibit a general trend of first rising and then falling, with uneven development among various cities in each province. Nonpoint sources are the largest source of land-based NPPE. Overall, positive spatial clustering of NPPE is observed in the cities of the YREB, and there is a certain enhancement in clustering. The GDP of the primary industry and cultivated area are important human activity factors affecting the spatial distribution of NPPE, with economic factors exerting the greatest influence on the NPPE. In the future, the change in NPPE in the YREB at the provincial level is slight, while the nitrogen pollution emissions at the municipal level will develop towards a polarization trend. Most cities in the middle and lower reaches of the YREB in 2035 will exhibit medium to high emissions. This study provides a scientific basis for the control of regional NPPE, and it is necessary to strengthen cooperation and coordination among cities in the future, jointly improve the nitrogen and phosphorus pollution tracing and control management system, and achieve regional sustainable development.

4.
Aging (Albany NY) ; 16(11): 10108-10131, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870261

RESUMEN

In all mammals, the basement membrane serves as a pivotal extracellular matrix. Hepatocellular carcinoma (HCC) is a challenge among numerous cancer types shaped by basement membrane-related genes (BMGs). Our research established an innovative prognostic model that is highly accurate in its prediction of HCC prognoses and immunotherapy efficacy to summarize the crucial role of BMGs in HCC. We obtained HCC transcriptome analysis data and corresponding clinical data from The Cancer Genome Atlas (TCGA). To augment our dataset, we incorporated 222 differentially expressed BMGs identified from relevant literature. A weighted gene coexpression network analysis (WGCNA) of 10158 genes demonstrated four modules that were connected to HCC. Additionally, 66 genes that are found at the intersection of BMGs and HCC-related genes were designated as hub HCC-related BMGs. MMP1, ITGA2, P3H1, and CTSA comprise the novel model that was engineered using univariate and multivariate Cox regression analysis. Furthermore, the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) datasets encouraged the BMs model's validity. The overall survival (OS) of individuals with HCC may be precisely predicted in the TCGA and ICGC databases utilizing the BMs model. A nomogram based on the model was created in the TCGA database at similar time, and displayed a favorable discriminating ability for HCC. Particularly, when compared to the patients at an elevated risk, the patients with a low-risk profile presented different tumor microenvironment (TME) and hallmark pathways. Moreover, we discovered that a lower risk score of HCC patients would display a greater response to immunotherapy. Finally, quantitative real-time PCR (qRT-PCR) experiments were used to verify the expression patterns of BMs model. In summary, BMs model demonstrated efficacy in prognosticating the survival probability of HCC patients and their immunotherapeutic responsiveness.


Asunto(s)
Membrana Basal , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Membrana Basal/patología , Membrana Basal/metabolismo , Pronóstico , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Masculino , Femenino , Nomogramas , Redes Reguladoras de Genes , Bases de Datos Genéticas , Transcriptoma
5.
Artículo en Inglés | MEDLINE | ID: mdl-38844734

RESUMEN

Coronary artery aneurysms (CAAs) are morphologically classified as saccular and fusiform. There is still a great deal of clinical controversy as to which types of CAA are more likely to cause thrombosis. Therefore, the main objective of this study was to evaluate the trend of thrombus growth in CAAs with different morphologies and to assess the risk of possible long-term complications based on hemodynamic parameters. Utilizing computed tomography angiography (CTA) data from eight healthy coronary arteries, two distinct morphologies of coronary artery aneurysms (CAAs) were reconstructed. Distribution of four wall shear stress (WSS)-based indicators and three helicity indicators was analyzed in this study. Meanwhile, a thrombus growth model was introduced to analyze the thrombus formation in CAAs with different morphologies. The research results showed the distribution of most WSS indicators between saccular and fusiform CAAs was not statistically significant. However, due to the presence of a more pronounced helical flow pattern, irregular helical flow structure and longer time of flow stagnation in saccular CAAs during the cardiac cycle, the mean and maximum relative residence time (RRT) were significantly higher in saccular CAAs than in fusiform CAAs (P < 0.05). This may increase the risk of saccular coronary arteries leading to aneurysmal dilatation or even rupture. Although the two CAAs had similar rates of thrombosis, fusiform CAAs may more early cause obstruction of the main coronary flow channel where the aneurysm is located due to thrombosis growth. Thus, the risk of thrombosis in fusiform coronary aneurysms may warrant greater clinical concern.

6.
Acad Radiol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38702214

RESUMEN

RATIONALE AND OBJECTIVES: To develop and validate a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CT) to identify the primary source of liver metastases. MATERIALS AND METHODS: In total, 657 liver metastatic lesions, including breast cancer (BC), lung cancer (LC), colorectal cancer (CRC), gastric cancer (GC), and pancreatic cancer (PC), from 428 patients were collected at three clinical centers from January 2018 to October 2023 series. The lesions were randomly assigned to the training and validation sets in a 7:3 ratio. An additional 112 lesions from 61 patients at another clinical center served as an external test set. A DLR model based on contrast-enhanced CT of the liver was developed to distinguish the five pathological types of liver metastases. Stepwise classification was performed to improve the classification efficiency of the model. Lesions were first classified as digestive tract cancer (DTC) and non-digestive tract cancer (non-DTC). DTCs were divided into CRC, GC, and PC and non-DTCs were divided into LC and BC. To verify the feasibility of the DLR model, we trained classical machine learning (ML) models as comparison models. Model performance was evaluated using accuracy (ACC) and area under the receiver operating characteristic curve (AUC). RESULTS: The classification model constructed by the DLR algorithm showed excellent performance in the classification task compared to ML models. Among the five categories task, highest ACC and average AUC were achieved at 0.563 and 0.796 in the validation set, respectively. In the DTC and non-DTC and the LC and BC classification tasks, AUC was achieved at 0.907 and 0.809 and ACC was achieved at 0.843 and 0.772, respectively. In the CRC, GC, and PC classification task, ACC and average AUC were the highest, at 0.714 and 0.811, respectively. CONCLUSION: The DLR model is an effective method for identifying the primary source of liver metastases.

7.
Front Pharmacol ; 15: 1341854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783935

RESUMEN

Introduction: Aristolochic acid nephropathy (AAN) is a kidney injury syndrome caused by aristolochic acids exposure. Our study used label-free quantitative proteomics to delineate renal protein profiles and identify key proteins after exposure to different doses of aristolochic acid I (AAI). Methods: Male C57BL/6 mice received AAI (1.25 mg/kg/d, 2.5 mg/kg/d, or 5 mg/kg/d) or vehicle for 5 days. Results and discussion: The results showed that AAI induced dose-dependent nephrotoxicity. Differences in renal protein profiles between the control and AAI groups increased with AAI dose. Comparing the control with the low-, medium-, and high-dose AAI groups, we found 58, 210, and 271 differentially expressed proteins, respectively. Furthermore, protein-protein interaction network analysis identified acyl-CoA synthetase medium-chain family member 3 (Acsm3), cytochrome P450 family 2 subfamily E member 1 (Cyp2e1), microsomal glutathione S-transferase 1 (Mgst1), and fetuin B (Fetub) as the key proteins. Proteomics revealed that AAI decreased Acsm3 and Cyp2e1 while increasing Mgst1 and Fetub expression in mice kidneys, which was further confirmed by Western blotting. Collectively, in AAI-induced nephrotoxicity, renal protein profiles were dysregulated and exacerbated with increasing AAI dose. Acsm3, Cyp2e1, Mgst1, and Fetub may be the potential therapeutic targets for AAN.

8.
Nat Commun ; 15(1): 3643, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684646

RESUMEN

Planting has been widely adopted to battle the loss of salt marshes and to establish living shorelines. However, the drivers of success in salt marsh planting and their ecological effects are poorly understood at the global scale. Here, we assemble a global database, encompassing 22,074 observations reported in 210 studies, to examine the drivers and impacts of salt marsh planting. We show that, on average, 53% of plantings survived globally, and plant survival and growth can be enhanced by careful design of sites, species selection, and novel planted technologies. Planting enhances shoreline protection, primary productivity, soil carbon storage, biodiversity conservation and fishery production (effect sizes = 0.61, 1.55, 0.21, 0.10 and 1.01, respectively), compared with degraded wetlands. However, the ecosystem services of planted marshes, except for shoreline protection, have not yet fully recovered compared with natural wetlands (effect size = -0.25, 95% CI -0.29, -0.22). Fortunately, the levels of most ecological functions related to climate change mitigation and biodiversity increase with plantation age when compared with natural wetlands, and achieve equivalence to natural wetlands after 5-25 years. Overall, our results suggest that salt marsh planting could be used as a strategy to enhance shoreline protection, biodiversity conservation and carbon sequestration.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Humedales , Conservación de los Recursos Naturales/métodos , Cambio Climático , Ecosistema , Suelo/química , Secuestro de Carbono , Explotaciones Pesqueras , Plantas
9.
Int Immunopharmacol ; 133: 112068, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626545

RESUMEN

Pyroptosis is an inflammatory form of programmed cell death that plays an important role in regulating tumor progression. Reniformin A (RA) is a natural compound isolated from the medicinal herb Isodon excisoides that has been applied as folk medicine in the treatment of esophageal cancer. However, whether RA has an individual function in cancer and the molecular mechanisms remain unclear. Here, we show that in non-small-cell lung cancer (NSCLC), RA inhibits tumor growth by functioning as a pyroptosis inducer to promote TLR4/NLRP3/caspase-1/GSDMD axis. Specially, RA treatment increased Toll-like receptor 4 (TLR4) protein expression level by enhancing the TLR4 stability. Based on the molecular docking, we identified that RA directly bound to TLR4 to activate the NLRP3 inflammasome and promote pyroptosis in A549 cells. Moreover, TLR4 is essential for RA-induced pyroptosis, and loss of TLR4 abolished RA-induced pyroptosis and further reduced the inhibitory effect of RA on NSCLC. In vivo experiments confirmed that RA inhibited the growth of lung tumors in mice by affecting pyroptosis in a dose-dependent manner. Furthermore, TLR4 knockdown abolished RA-induced pyroptosis and inhibited the effect of RA chemotherapy in vivo. In conclusion, we propose that RA has a significant anticancer effect in NSCLC by inducing TLR4/NLRP3/caspase-1/GSDMD-mediated pyroptosis, which may provide a potential strategy for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Piroptosis , Animales , Humanos , Ratones , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasa 1/metabolismo , Progresión de la Enfermedad , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
10.
J Colloid Interface Sci ; 667: 385-392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640657

RESUMEN

Introducing the appropriate vacancies to augment the active sites and improve the electrochemical kinetics while maintaining high cyclability is a major challenge for its widespread application in electrochemical energy storage. Here, core-shell structured Bi2S3@C with sulfur vacancies was prepared by hydrothermal method and one-step carbonization/sulfuration process, which significantly improves the intrinsic electrical conductivity and ion transport efficiency of Bi2S3. Additionally, the uniform protective carbon layer around surface of composite maintains structural stability and effectively alleviates volume expansion during alloying/dealloying. As a result, the BSC-500 anode exhibits a brilliant reversible capacity of 636 mAh/g at 0.2 A/g and a long-term stable capacity of 524 mAh/g for 500 cycles at a high current density of 3 A/g in lithium-ion batteries. In addition, the assembled Bi2S3@C//LiCoO2 full cell delivered a capacity of 184 mAh/g at 1 A/g and excellent cyclability (125 mAh/g after 1000 cycles). The proposed strategy of combining sulfur vacancies with a core-shell structure to improve the electrochemical kinetics of Bi2S3 in lithium-ion batteries off the prospect for practical applications of transition metal sulfide anodes.

11.
J Imaging Inform Med ; 37(3): 976-987, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347392

RESUMEN

The aim of this study was to investigate the feasibility of deep learning (DL) based on multiparametric MRI to differentiate the pathological subtypes of brain metastasis (BM) in lung cancer patients. This retrospective analysis collected 246 patients (456 BMs) from five medical centers from July 2016 to June 2022. The BMs were from small-cell lung cancer (SCLC, n = 230) and non-small-cell lung cancer (NSCLC, n = 226; 119 adenocarcinoma and 107 squamous cell carcinoma). Patients from four medical centers were assigned to training set and internal validation set with a ratio of 4:1, and we selected another medical center as an external test set. An attention-guided residual fusion network (ARFN) model for T1WI, T2WI, T2-FLAIR, DWI, and contrast-enhanced T1WI based on the ResNet-18 basic network was developed. The area under the receiver operating characteristic curve (AUC) was used to assess the classification performance. Compared with models based on five single-sequence and other combinations, a multiparametric MRI model based on five sequences had higher specificity in distinguishing BMs from different types of lung cancer. In the internal validation and external test sets, AUCs of the model for the classification of SCLC and NSCLC brain metastasis were 0.796 and 0.751, respectively; in terms of differentiating adenocarcinoma from squamous cell carcinoma BMs, the AUC values of the prediction models combining the five sequences were 0.771 and 0.738, respectively. DL together with multiparametric MRI has discriminatory feasibility in identifying pathology type of BM from lung cancer.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Neoplasias Pulmonares , Imagen por Resonancia Magnética , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Imagen por Resonancia Magnética/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/secundario , Adulto , Interpretación de Imagen Asistida por Computador/métodos , Carcinoma Pulmonar de Células Pequeñas/diagnóstico por imagen , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/secundario , Estudios de Factibilidad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Curva ROC
12.
Water Res ; 253: 121268, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340700

RESUMEN

The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.


Asunto(s)
Incrustaciones Biológicas , Microplásticos , Membranas Artificiales , Percepción de Quorum , Bacterias , Biopelículas
13.
Mol Biol Rep ; 51(1): 141, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236467

RESUMEN

Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.


Asunto(s)
Neoplasias , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/genética , Neoplasias/genética
14.
Int J Biol Macromol ; 257(Pt 2): 128591, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052287

RESUMEN

In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 µmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.


Asunto(s)
Glútenes , Reacción de Maillard , Glútenes/química , Espectroscopía Infrarroja por Transformada de Fourier , Hidrólisis , Solubilidad
15.
Planta Med ; 90(2): 154-165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37931776

RESUMEN

Astragaloside IV (AS-IV) has been shown to provide renal protection in various kidney injury models. However, the metabolic profile variation of AS-IV in pathological models in vivo is not well established. This study aims to explore the metabolic pathway of AS-IV in vivo in the classical puromycin aminonucleoside (PAN)-induced kidney injury in a rat model. Twelve Wistar rats were randomly divided into the AS-IV (CA) and the PAN+AS-IV (PA) treatment groups. PAN was injected by a single tail intravenous (i. v.) injection at 5 mg/100 g body weight, and AS-IV was administered intragastrically (i. g.) at 40 mg/kg for 10 days. Fecal samples of these rats were collected, and metabolites of AS-IV were detected by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) to explore the AS-IV metabolic pathway. The metabolic differences between the AS-IV and PAN+AS-IV groups were compared. A total of 25 metabolites were detected, and deglycosylation, deoxygenation, and methyl oxidation were found to be the main metabolic pathways of AS-IV in vivo. The abundance of most of these metabolites in the PAN+AS-IV group was lower than that in the AS-IV treatment group, and differences for seven of them were statistically significant. Our study indicates that AS-IV metabolism is affected in the PAN-induced kidney injury rat model.


Asunto(s)
Saponinas , Espectrometría de Masas en Tándem , Triterpenos , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Ratas Wistar , Puromicina
16.
Environ Toxicol ; 39(1): 421-434, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792549

RESUMEN

Papillary thyroid cancer (PTC) is a prevalent malignancy worldwide. Spleen tyrosine kinase (SYK) is a crucial enzyme that participates in various biological processes, including cancer progression. This study aims to uncover the biological function of SYK in PTC. SYK expression patterns in PTC were evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and western blot. Cell function assays were performed to assess the effects of SYK on PTC. Bioinformatics analysis was conducted to identify intriguing microRNA (miRNA) and circular RNA (circRNA). Dual-Luciferase Reporter or RNA immunoprecipitation assays were used to investigate the correlation among SYK, miR-377-3p, and hsa_circ_0006417. SYK was upregulated in PTC. Overexpression of SYK exhibited a positive correlation with tumor size, lymph node metastasis, and unfavorable disease-free survival. Functional assays revealed that SYK exerted tumorigenic effect on PTC cells through mTOR/4E-BP1 pathway. Mechanistically, hsa_circ_0006417 and miR-377-3p regulated SYK expression, offering modulating its tumor-promoting effects. Collectively, SYK acts as an oncogene in PTC through mTOR/4E-BP1 pathway, which is regulated by the hsa_circ_0006417/miR-377-3p axis, thereby providing a potential alternative for PTC treatment.


Asunto(s)
MicroARNs , ARN Circular , Quinasa Syk , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Quinasa Syk/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/metabolismo , Serina-Treonina Quinasas TOR , ARN Circular/genética
17.
Int J Biol Macromol ; 254(Pt 1): 127722, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907173

RESUMEN

Porcine epidemic diarrhea virus (PEDV) infection causes immunosuppression and clinical symptoms such as vomiting, watery diarrhea, dehydration, and even death in piglets. TRIM28, an E3 ubiquitin ligase, is involved in the regulation of autophagy. However, the role of TRIM28 in PEDV infection is unknown. This study aimed to determine whether TRIM28 acts as a host factor for PEDV immune escape. We found that depletion of TRIM28 inhibited PEDV replication, whereas overexpression of TRIM28 promoted the viral replication in host cells. Furthermore, knockdown of TRIM28 reversed PEDV-induced downregulation of the JAK/STAT1 pathway. Treatment with the mitophagic activator carbonyl cyanide 3-chlorophenylhydrazone (CCCP) attenuated the activating effect of TRIM28 depletion on the expression of the STAT1 pathway-related proteins. Treatment with CCCP also reduced the nuclear translocation of pSTAT1. Moreover, TRIM28, via its RING domain, interacted with PEDV N. Overexpression of TRIM28 induced mitophagy, which could be enhanced by co-expression with PEDV N. The results indicate that PEDV infection upregulates the expression of TRIM28, which induces mitophagy, leading to inhibition of the JAK-STAT1 pathway. This research unveils a new mechanism by which PEDV can hijack host cellular TRIM28 to promote its own replication.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , Chlorocebus aethiops , Mitofagia , Carbonil Cianuro m-Clorofenil Hidrazona , Replicación Viral , Células Vero
18.
Artículo en Inglés | MEDLINE | ID: mdl-37734594

RESUMEN

BACKGROUND & AIMS: The nuclear receptor coactivator 5 (NCOA5) is a putative type 2 diabetes susceptibility gene. NCOA5 haploinsufficiency results in the spontaneous development of nonalcoholic fatty liver disease (NAFLD), insulin resistance, and hepatocellular carcinoma (HCC) in male mice; however, the cell-specific effect of NCOA5 haploinsufficiency in various types of cells, including macrophages, on the development of NAFLD and HCC remains unknown. METHODS: Control and myeloid-lineage-specific Ncoa5 deletion (Ncoa5ΔM/+) mice fed a normal diet were examined for the development of NAFLD, nonalcoholic steatohepatitis (NASH), and HCC. Altered genes and signaling pathways in the intrahepatic macrophages of Ncoa5ΔM/+ male mice were analyzed and compared with those of obese human individuals. The role of platelet factor 4 (PF4) in macrophages and the underlying mechanism by which PF4 affects NAFLD/NASH were explored in vitro and in vivo. PF4 expression in HCC patient specimens and prognosis was examined. RESULTS: Myeloid-lineage-specific Ncoa5 deletion sufficiently causes spontaneous NASH and HCC development in male mice fed a normal diet. PF4 overexpression in Ncoa5ΔM/+ intrahepatic macrophages is identified as a potent mediator to trigger lipid accumulation in hepatocytes by inducing lipogenesis-promoting gene expression. The transcriptome of intrahepatic macrophages from Ncoa5ΔM/+ male mice resembles that of obese human individuals. High PF4 expression correlated with poor prognosis of HCC patients and increased infiltrations of M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells in HCCs. CONCLUSIONS: Our findings reveal a novel mechanism for the onset of NAFLD/NASH and HCC initiated by NCOA5-deficient macrophages, suggesting the NCOA5-PF4 axis in macrophages as a potential target for developing preventive and therapeutic interventions against NAFLD/NASH and HCC.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Carcinoma Hepatocelular/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Neoplasias Hepáticas/patología , Diabetes Mellitus Tipo 2/complicaciones , Haploinsuficiencia , Factores de Transcripción/metabolismo , Obesidad/complicaciones , Obesidad/genética , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo
19.
Aging (Albany NY) ; 16(1): 106-128, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38157259

RESUMEN

BACKGROUND: Patients with chronic kidney disease (CKD) lack efficacious treatment. Jian-Pi-Yi-Shen formula (JPYSF) has demonstrated significant clinical efficacy in treating CKD for decades. However, its renoprotective mechanism has not been fully elucidated. This study aimed to determine whether JPYSF could delay renal fibrosis progression in CKD by restoring nicotinamide adenine dinucleotide (NAD+) biosynthesis. METHODS: Adenine-diet feeding was used to model CKD in C57BL/6 mice. JPYSF was orally administered for 4 weeks. Human proximal tubular epithelial cells (HK-2) cells were stimulated with transforming growth factor-ß1 (TGF-ß1) with or without JPYSF treatment. Renal function of mice was assessed by serum creatinine and blood urea nitrogen levels. Renal histopathological changes were assessed using Periodic acid-Schiff and Masson's trichrome staining. Cell viability was assessed using a cell counting kit-8 assay. NAD+ concentrations were detected by a NAD+/NADH assay kit. Western blotting, immunohistochemistry, and immunofluorescence were employed to examine fibrosis-related proteins and key NAD+ biosynthesis enzymes expression in the CKD kidney and TGF-ß1-induced HK-2 cells. RESULTS: JPYSF treatment could not only improve renal function and pathological injury but also inhibit renal fibrosis in CKD mice. Additionally, JPYSF reversed fibrotic response in TGF-ß1-induced HK-2 cells. Moreover, JPYSF rescued the decreased NAD+ content in CKD mice and TGF-ß1-induced HK-2 cells through restoring expression of key enzymes in NAD+ biosynthesis, including quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide riboside kinase 1. CONCLUSIONS: JPYSF alleviated renal fibrosis in CKD mice and reversed fibrotic response in TGF-ß1-induced HK-2 cells, which may be related to the restoration of NAD+ biosynthesis.


Asunto(s)
NAD , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Fibrosis , Riñón/patología , Ratones Endogámicos C57BL , NAD/biosíntesis , Insuficiencia Renal Crónica/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
20.
Biomimetics (Basel) ; 8(8)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38132499

RESUMEN

The motion process of legged robots contains not only rigid-body motion but also flexible motion with elastic deformation of the legs, especially for heavy loads. Hence, the characteristics of the flexible components and their interactions with the rigid components need to be considered. In this paper, a hierarchical control strategy for robots with rigid-flexible coupling characteristics is proposed. This strategy involves (1) leg force prediction based on real-time motion trajectories and feedforward compensation for the error caused by flexible components; (2) building upon the centroid dynamics model of the rigid-body chassis, the centroid trajectories (centroid angular momentum (CAM) and centroid linear momentum (CLM)) and the body trajectory are taken into account to derive the optimal drive torque for maintaining body stability; (3) finally, the precise force control of the hydraulic drive units is achieved through the sliding mode control algorithm, integrating the dynamic model of the flexible legs. The proposed methods are validated on a giant hexapod robot weighing 3.5 tons, demonstrating that the introduced approach can reduce the robot's vibrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA