Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arq Bras Cardiol ; 121(8): e20230767, 2024.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-39230107

RESUMEN

Cardiovascular disease is the predominant cause of mortality on a global scale. Research indicates that women exhibit a greater likelihood of presenting with non-obstructive coronary artery disease (CAD) when experiencing symptoms of myocardial ischemia in comparison to men. Additionally, women tend to experience a higher burden of symptoms relative to men, and despite the presence of ischemic heart disease, they are frequently reassured erroneously due to the absence of obstructive CAD. In cases of ischemic heart disease accompanied by symptoms of myocardial ischemia but lacking obstructive CAD, it is imperative to consider coronary microvascular dysfunction as a potential underlying cause. Coronary microvascular dysfunction, characterized by impaired coronary flow reserve resulting from functional and/or structural abnormalities in the microcirculation, is linked to adverse cardiovascular outcomes. Lifestyle modifications and the use of anti-atherosclerotic and anti-anginal medications may offer potential benefits, although further clinical trials are necessary to inform treatment strategies. This review aims to explore the prevalence, underlying mechanisms, diagnostic approaches, and therapeutic interventions for coronary microvascular dysfunction.


A doença cardiovascular é a causa predominante de mortalidade em escala global. A pesquisa indica que as mulheres, em comparação aos homens, apresentam maior probabilidade de apresentar doença arterial coronariana (DAC) não obstrutiva quando têm sintomas de isquemia miocárdica. Além disso, as mulheres tendem a apresentar uma maior carga de sintomas em relação aos homens e, apesar da presença de doença cardíaca isquêmica, são frequentemente tranquilizadas erroneamente devido à ausência de DAC obstrutiva. Nos casos de cardiopatia isquêmica acompanhada de sintomas de isquemia miocárdica, mas sem DAC obstrutiva, é imperativo considerar a disfunção microvascular coronariana como uma potencial causa subjacente. A disfunção microvascular coronariana, caracterizada por reserva de fluxo coronariano prejudicada resultante de anormalidades funcionais e/ou estruturais na microcirculação, está associada a desfechos cardiovasculares adversos. Modificações no estilo de vida e o uso de medicamentos antiateroscleróticos e antianginosos podem oferecer benefícios potenciais, embora sejam necessários mais ensaios clínicos para informar estratégias de tratamento. Esta revisão tem como objetivo explorar a prevalência, mecanismos subjacentes, abordagens diagnósticas e intervenções terapêuticas para disfunção microvascular coronariana.


Asunto(s)
Enfermedad de la Arteria Coronaria , Circulación Coronaria , Microcirculación , Humanos , Microcirculación/fisiología , Circulación Coronaria/fisiología , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/terapia , Femenino , Masculino , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/terapia , Factores Sexuales , Factores de Riesgo
2.
Adv Sci (Weinh) ; : e2404127, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234852

RESUMEN

Inhibitors of α-amylase have been developed to regulate postprandial blood glucose fluctuation. The enzyme inhibition arises from direct or indirect inhibitor-enzyme interactions, depending on inhibitor structures. However, an ignored factor, substrate, may also influence or even decide the enzyme inhibition. In this work, it is innovatively found that the difference in substrate enzymolysis modes, i.e., structural composition and concentration of α-1,4-glucosidic bonds, triggers the diversity in inhibitor-enzyme aggregating behaviors and α-amylase inhibition. For competitive inhibition, there exists an equilibrium between α-amylase-substrate catalytic affinity and inhibitor-α-amylase binding affinity; therefore, a higher enzymolysis affinity and concentration of α-1,4-glucosidic structures interferes the balance, unfavoring inhibitor-enzyme aggregate formation and thus weakening α-amylase inhibition. For uncompetitive inhibition, the presence of macromolecular starch is necessary instead of micromolecular GalG2CNP, which not only binds with active site but with an assistant flexible loop (involving Gly304-Gly309) near the site. Hence, the refined enzyme structure due to the molecular flexibility more likely favors the inhibitor binding with the non-active loop, forming an inhibitor-enzyme-starch ternary aggregate. Conclusively, this study provides a novel insight into the evaluation of α-amylase inhibition regarding the participating role of substrate in inhibitor-enzyme aggregating interactions, emphasizing the selection of appropriate substrates in the development and screening of α-amylase inhibitors.

3.
Food Chem ; 460(Pt 3): 140761, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137575

RESUMEN

This study aims to investigate the effects of interfacial layer composition and structure on the formation, physicochemical properties and stability of Pickering emulsions. Interfacial layers were formed using pea protein isolate (PPI), PPI microgel particles (PPIMP), a mixture of PPIMP and sodium alginate (PPIMP-SA), or PPIMP-SA conjugate. The encapsulation and protective effects on different hydrophobic bioactives were then evaluated within these Pickering emulsions. The results demonstrated that the PPIMP-SA conjugate formed thick and robust interfacial layers around the oil droplet surfaces, which increased the resistance of the emulsion to coalescence, creaming, and environmental stresses, including heating, light exposure, and freezing-thawing cycle. Additionally, the emulsion stabilized by the PPIMP-SA conjugate significantly improved the photothermal stability of hydrophobic bioactives, retaining a higher percentage of their original content compared to those in non-encapsulated forms. Overall, the novel protein microgels and the conjugate developed in this study have great potential for improving the physicochemical stability of emulsified foods.


Asunto(s)
Alginatos , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Microgeles , Proteínas de Guisantes , Alginatos/química , Emulsiones/química , Proteínas de Guisantes/química , Microgeles/química , Tamaño de la Partícula , Pisum sativum/química
4.
SLAS Technol ; 29(5): 100186, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214254

RESUMEN

Paroxysmal atrial fibrillation is a common arrhythmia, and its development process and prediction of the degree of atrial fibrosis are of great significance for treatment and management. Optical imaging technology provides a new means for non-invasive observation of atrial electrical activity. The aim of this study is to investigate the predictive effect of sinus node recovery time on the degree of atrial fibrosis in patients with paroxysmal atrial fibrillation, and to provide a basis for the application of optical imaging technology in the study of atrial fibrosis. The study collected clinical and optical imaging data from a group of patients with paroxysmal atrial fibrillation, and used statistical analysis methods to investigate the relationship between sinus node recovery time and the degree of atrial fibrosis. The research results indicate that there is a significant correlation between the recovery time of the sinus node and the degree of atrial fibrosis, that is, there is a positive correlation between the prolonged recovery time of the sinus node and the aggravation of atrial fibrosis. SNRT can serve as an effective indicator for evaluating atrial matrix and can be applied to predict recurrence after catheter ablation of paroxysmal atrial fibrillation. Shortening SNRT through catheter ablation can become an important predictor of effective catheter ablation.

5.
J Sci Food Agric ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210730

RESUMEN

BACKGROUND: Curcumin is widely known for its antioxidant and anti-inflammatory properties, but its mechanism of action in mitigating oxidative stress injury in brain vascular endothelial cells remains unclear. Due to the poor bioavailability of curcumin, it is challenging to achieve effective concentrations at the target sites. Nano-micelles are known for their ability to improve the solubility, stability, and bioavailability of hydrophobic compounds like curcumin. This study investigated the effects and mechanisms of free curcumin and curcumin embedded in nano-micelles (M(Cur)) on oxidative stress-induced injury in bEnd.3 cells. RESULTS: At a protective concentration of 10 µg mL-1, micellar curcumin was better able to recover the morphology of bEnd.3 cells under oxidative stress while increasing cell viability, restoring mitochondrial membrane electrical potential, and effectively inhibiting reactive oxygen species generation with a positive cell rate of 2.21%. These results indicate that curcumin significantly improves H2O2-induced oxidative stress damage in endothelial cells by maintaining the cellular antioxidant balance. CONCLUSION: This study adds to knowledge regarding the role of nano-micelles in curcumin intervention for endothelial cell oxidative damage and provides insights for the development of curcumin-based dietary supplements. © 2024 Society of Chemical Industry.

7.
J Agric Food Chem ; 72(32): 17989-18002, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082086

RESUMEN

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Lactobacillus plantarum , Neuronas , Probióticos , Triptófano , Triptófano/metabolismo , Animales , Probióticos/administración & dosificación , Humanos , Ratones , Neuronas/metabolismo , Masculino , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/dietoterapia , Síndrome del Colon Irritable/terapia , Lactobacillus plantarum/metabolismo , Ratones Endogámicos C57BL , Intestinos/microbiología
8.
Int J Biol Macromol ; 276(Pt 1): 133794, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992530

RESUMEN

Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1ß, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-ß) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.


Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , Hippophae , Polisacáridos , Simbióticos , Linfocitos T Reguladores , Células Th17 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Células Th17/inmunología , Células Th17/metabolismo , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Polisacáridos/farmacología , Hippophae/química , Ácidos Grasos Volátiles/metabolismo , Homeostasis/efectos de los fármacos , Masculino , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
9.
Int J Biol Macromol ; 276(Pt 1): 133833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013513

RESUMEN

Pasteurization is an effective sterilization technique for the treatment of liquid egg white (LEW), but the pasteurization temperature is generally limited because increased temperature can lead to aggregation of the proteins and affect their processing properties. In this study, phosphorylation modification was used to increase the thermal stability and pasteurization temperature of LEW, aiming to enhance the pasteurization sterilizing effect. The FT-IR results showed that the phosphate groups were successfully grafted into protein molecules, improving the order degree of protein molecules. In this case, the pasteurization temperature of LEW increased from 58 °C to 61 °C, without accompanying thermal aggregation. The molecular structural results suggested that the enhanced thermal stability was attributed to the decreased average particle size and the increased electrostatic repulsion between protein molecules, which largely reduced the turbidity of LEW during pasteurization treatment. Meanwhile, this process was dominated by noncovalent interactions (hydrophobic interactions and hydrogen bonding). Furthermore, the phosphorylation modification can synchronously improve emulsifying and foaming properties of LEW. Therefore, this work suggested that phosphorylation has great potential to improve thermal stability and pasteurization temperature of LEW, which can be utilized to extend its sterilizing effect and shelf life.


Asunto(s)
Clara de Huevo , Pasteurización , Temperatura , Fosforilación , Clara de Huevo/química , Tamaño de la Partícula , Animales , Interacciones Hidrofóbicas e Hidrofílicas
10.
Food Funct ; 15(15): 7865-7882, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38967039

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-ß (Aß) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Clostridium , Disfunción Cognitiva , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Indoles , Ratones Transgénicos , Simbióticos , Xilanos , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Ratones , Simbióticos/administración & dosificación , Indoles/metabolismo , Disfunción Cognitiva/terapia , Disfunción Cognitiva/metabolismo , Xilanos/metabolismo , Xilanos/farmacología , Clostridium/metabolismo , Masculino , Péptidos beta-Amiloides/metabolismo , Humanos , Propionatos/metabolismo , Eje Cerebro-Intestino/fisiología
11.
Food Chem ; 457: 140124, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908239

RESUMEN

Phenolics in bound form extensively exist in cereal dietary fiber, especially insoluble fiber, while their release profile in gastrointestinal tract and contribution to the potential positive effects of dietary fiber in modulating gut microbiota still needs to be disclosed. In this work, the composition of bound phenolics (BPs) in triticale insoluble dietary fiber (TIDF) was studied, and in vitro gastrointestinal digestion as well as colonic fermentation were performed to investigate BPs liberation and their role in regulating intestinal flora of TIDF. It turned out that most BPs were unaccessible in digestion but partly released continuously during fermentation. 16 s rRNA sequencing demonstrated that TIDF possessed prebiotic effects by promoting anti-inflammatory while inhibiting proinflammatory bacteria alongside boosting SCFAs production and antioxidative BPs contributed a lot to these effects. Results indicated that TIDF held capabilities to regulate intestinal flora and BPs were important functional components to the health benefits of cereal dietary fiber.


Asunto(s)
Bacterias , Colon , Fibras de la Dieta , Digestión , Fermentación , Microbioma Gastrointestinal , Fenoles , Prebióticos , Fibras de la Dieta/metabolismo , Fibras de la Dieta/farmacología , Fibras de la Dieta/análisis , Prebióticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Fenoles/metabolismo , Fenoles/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Colon/metabolismo , Colon/microbiología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Grano Comestible/química , Grano Comestible/metabolismo
12.
Mol Nutr Food Res ; 68(11): e2400090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757671

RESUMEN

SCOPE: Depression, a prevalent mental disorder, has significantly impacted the lives of 350 million people, yet it holds promise for amelioration through food-derived phenolics. Raspberries, renowned globally for their delectable flavor, harbor a phenolic compound known as raspberry ketone (RK). However, the impact of RK on depressive symptoms remains ambiguous. This study aims to investigate the impact of RK on lipopolysaccharide (LPS)-induced depressed mice and elucidates its potential mechanisms, focusing on the gut-brain axis. METHODS AND RESULTS: Through behavioral tests, RK exerts a notable preventive effect on LPS-induced depression-like behaviors in mice. RK proves capable of attenuating gut inflammation, repairing gut barrier impairment, modulating the composition of the gut microbiome (Muribaculaceae, Streptococcus, Lachnospiraceae, and Akkermansia), and promoting the production of short-chain fatty acids. Furthermore, RK alleviates neuroinflammation by suppressing the TLR-4/NF-κB pathway and bolsters synaptic function by elevating levels of neurotrophic factors and synapse-associated proteins. CONCLUSION: The current study provides compelling evidence that RK effectively inhibits the TLR-4/NF-κB pathway via the gut-brain axis, leading to the improvement of LPS-induced depression-like behaviors in mice. This study addresses the research gap in understanding the antidepressant effects of RK and illuminates the potential of utilizing RK as a functional food for preventing depression.


Asunto(s)
Eje Cerebro-Intestino , Depresión , Microbioma Gastrointestinal , Lipopolisacáridos , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/toxicidad , FN-kappa B/metabolismo , Depresión/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Ratones , Eje Cerebro-Intestino/efectos de los fármacos , Eje Cerebro-Intestino/fisiología , Butanonas/farmacología , Ratones Endogámicos C57BL , Conducta Animal/efectos de los fármacos , Antidepresivos/farmacología
13.
Int J Biol Macromol ; 270(Pt 2): 132313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740156

RESUMEN

The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (ß-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic ß-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of ß-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.


Asunto(s)
Alginatos , Emulsiones , Proteínas de Guisantes , Riboflavina , beta Caroteno , beta Caroteno/química , Alginatos/química , Riboflavina/química , Emulsiones/química , Proteínas de Guisantes/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Estabilidad de Medicamentos , Cápsulas
14.
Clin Nutr ESPEN ; 61: 131-139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777424

RESUMEN

BACKGROUND: Insulin resistance (IR) elevates cardiovascular disease (CVD) and mortality risks. Insulin resistance (IR) increases the risk of CVDs and mortality. Recently, the American Heart Association introduced the Life's Essential 8 (LE8) framework to assess cardiovascular health (CVH). However, its impact on mortality in IR populations is unknown. METHODS: Analyzing 2005-2018 National Health and Nutrition Examination Survey data, we studied 5301 IR adults (≥20 years). LE8 scores were calculated and participants were categorized into low, moderate, and high CVH groups. Systemic immune-inflammation index (SII) and heart age/vascular age (HVA) were measured as potential mediators. Cox models estimated all-cause and CVD mortality hazard ratios (HRs), stratified by LE8 score and sex, and adjusted for covariates. Mediation analyses assessed SII and HVA's indirect effects. This study is an observational cohort study. RESULTS: Over a 7.5-year median follow-up, 625 deaths occurred, including 159 CVD-related. Compared to low CVH, moderate and high CVH groups showed reduced all-cause (HR = 0.72, 95% CI 0.58-0.89; HR = 0.38, 95% CI 0.22-0.67) and CVD mortality (HR = 0.42, 95% CI 0.26-0.69; HR = 0.15, 95% CI 0.04-0.57). A 10-point LE8 increase correlated with 15% and 31% reductions in all-cause and CVD mortality, respectively. SII and HVA mediated up to 38% and 12% of these effects. The LE8's protective effect was more pronounced in men. CONCLUSION: LE8 effectively evaluates CVH and lowers mortality risk in IR adults, partially mediated by SII and HVA. The findings inform clinical practice and public health strategies for CVD prevention in IR populations.


Asunto(s)
Enfermedades Cardiovasculares , Inflamación , Resistencia a la Insulina , Humanos , Masculino , Femenino , Persona de Mediana Edad , Enfermedades Cardiovasculares/mortalidad , Adulto , Factores Sexuales , Encuestas Nutricionales , Envejecimiento , Anciano , Factores de Riesgo , Estudios de Cohortes
15.
Int J Biol Macromol ; 272(Pt 2): 132583, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795882

RESUMEN

The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Biopolímeros/química , Ingeniería de Tejidos/métodos , Humanos , Fenómenos Mecánicos , Nanocompuestos/química , Materiales Biocompatibles/química , Animales , Impresión Tridimensional , Bioimpresión/métodos
16.
Aging (Albany NY) ; 16(9): 8070-8085, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728249

RESUMEN

BACKGROUND: Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS: The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-ß-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS: Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS: Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-ß-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.


Asunto(s)
Senescencia Celular , Células Endoteliales , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Lipoproteínas LDL , Mitocondrias , Especies Reactivas de Oxígeno , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Factor 4 Similar a Kruppel/metabolismo , Animales , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Especies Reactivas de Oxígeno/metabolismo , Senescencia Celular/efectos de los fármacos , Mitocondrias/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Humanos , Células Endoteliales/metabolismo , Citocinas/metabolismo , Fenotipo , Ratones Noqueados , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Masculino , Transducción de Señal
17.
Ann Med Surg (Lond) ; 86(5): 2848-2855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694287

RESUMEN

Vascular calcification is an important hallmark of atherosclerosis. Coronary artery calcification (CAC) implies the presence of coronary artery disease (CAD), irrespective of risk factors or symptoms, is concomitant with the development of advanced atherosclerosis. Coronary thrombosis is the most common clinical end event leading to acute coronary syndrome (ACS). The least common type of pathology associated with thrombosis is the calcified nodule (CN). It usually occurs in elderly patients with severely calcified and tortuous arteries. The prevalence of calcified nodules in patients with ACS may be underestimated due to the lack of easily recognisable diagnostic methods. In this review, the authors will focus on the classification, clinical significance, pathogenesis, and diagnostic evaluation and treatment of CAC to further explore the clinical significance of CN.

18.
Compr Rev Food Sci Food Saf ; 23(3): e13322, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38597567

RESUMEN

Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.


Asunto(s)
Encapsulación Celular , Probióticos , Humanos , Tracto Gastrointestinal , Biopelículas
19.
Food Res Int ; 185: 114277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658069

RESUMEN

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Asunto(s)
Emulsiones , Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Mentha piperita , Aceites de Plantas , Mentha piperita/química , Emulsiones/química , Humanos , Aceites de Plantas/química , Aromatizantes/química , Gelatina/química , Reactivos de Enlaces Cruzados/química , Gusto , Hidrogeles/química , Nariz Electrónica , Masculino , Femenino , Adulto
20.
Quant Imaging Med Surg ; 14(4): 2904-2915, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617179

RESUMEN

Background: The effects of glycemic status on coronary physiology have not been well evaluated. This study aimed to investigate changes in coronary physiology by using angiographic quantitative flow ratio (QFR), and their relationships with diabetes mellitus (DM) and glycemic control status. Methods: This retrospective cohort study included 530 patients who underwent serial coronary angiography (CAG) measurements between January 2016 and December 2021 at Tongji Hospital of Tongji University. Based on baseline and follow-up angiograms, 3-vessel QFR (3V-QFR) measurements were performed. Functional progression of coronary artery disease (CAD) was defined as a change in 3V-QFR (Δ3V-QFR = 3V-QFRfollow-up - 3V-QFRbaseline) ≤-0.05. Univariable and multivariable logistic regression analyses were applied to identify the independent predictors of coronary functional progression. Subgroup analysis according to diabetic status was performed. Results: During a median interval of 12.1 (10.6, 14.3) months between the two QFR measurements, functional progression was observed in 169 (31.9%) patients. Follow-up glycosylated hemoglobin (HbA1c) was predictive of coronary functional progression with an area under the curve (AUC) of 0.599 [95% confidence interval (CI): 0.546-0.651; P<0.001] in the entire population. Additionally, the Δ3V-QFR values were significantly lower in diabetic patients with HbA1c ≥7.0% compared to those with well-controlled HbA1c or non-diabetic patients [-0.03 (-0.09, 0) vs. -0.02 (-0.05, 0.01) vs. -0.02 (-0.05, 0.02); P=0.002]. In a fully adjusted multivariable logistics analysis, higher follow-up HbA1c levels were independently associated with progression in 3V-QFR [odds ratio (OR), 1.263; 95% CI: 1.078-1.479; P=0.004]. Furthermore, this association was particularly strong in diabetic patients (OR, 1.353; 95% CI: 1.082-1.693; P=0.008) compared to patients without DM. Conclusions: Among patients with established CAD, on-treatment HbA1c levels were independently associated with progression in physiological atherosclerotic burden, especially in patients with DM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA