Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Cell ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159157

RESUMEN

During the floral transition, many plant species including chrysanthemum (Chrysanthemum morifolium) require continuous photoperiodic stimulation for successful anthesis. Insufficient photoperiodic stimulation results in flower bud arrest or even failure. The molecular mechanisms underlying how continuous photoperiodic stimulation promotes anthesis are not well understood. Here, we reveal that in wild chrysanthemum (C. indicum), an obligate short-day (SD) plant, floral evocation is not limited to SD conditions. However, SD signals generated locally in the inflorescence meristem (IM) play a vital role in ensuring anthesis after floral commitment. Genetic analyses indicate that the florigen FLOWERING LOCUS T-LIKE3 (CiFTL3) plays an important role in floral evocation, but a lesser role in anthesis. Importantly, our data demonstrate that AGAMOUS-LIKE 24 (CiAGL24) is a critical component of SD signal perception in the IM to promote successful anthesis, and that floral evocation and anthesis are two separate developmental events in chrysanthemum. We further reveal that the central circadian clock component PSEUDO-RESPONSE REGULATOR 7 (CiPRR7) in the IM activates CiAGL24 expression in response to SD conditions. Moreover, our findings elucidate a negative feedback loop in which CiAGL24 and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (CiSOC1) modulate LEAFY (CiLFY) expression. Together, our results demonstrate that the CiPRR7-CiAGL24 module is vital for sustained SD signal perception in the IM to ensure successful anthesis in chrysanthemum.

2.
Basic Res Cardiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724618

RESUMEN

Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.

3.
Acta Pharm Sin B ; 14(5): 1939-1950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799626

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.

4.
Animals (Basel) ; 14(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731282

RESUMEN

The negative energy balance occurring in the periparturient period of cows will impede their health and postpartum performance. To target this issue, L-tryptophan was supplied to the prepartum cows. The results showed that L-tryptophan supplementation significantly increased the serum melatonin level and was accompanied with increases in SOD activity, IL-10 and colostrum IgA levels as well as decreases in MDA and IL-6 levels compared to the control cows. The incidence of postpartum diseases was significantly lower and the pregnancy rate was significantly higher in cows fed L-tryptophan than in the control group. A striking observation was that prepartum L-tryptophan supplementation not only improved the milk production but also the quality compared to the control cows. In general, supplementation with L-tryptophan in the prepartum period can improve the postpartum reproduction and lactation performance of cows to some extent.

5.
Anal Chem ; 96(21): 8390-8398, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38716680

RESUMEN

In this work, a microfluidic immunosensor chip was developed by incorporating microfluidic technology with electrochemiluminescence (ECL) for sensitive detection of human epidermal growth factor receptor-2 (HER2). The immunosensor chip can achieve robust reproducibility in mass production by integrating multiple detection units in a series. Notably, nanoscale materials can be better adapted to microfluidic systems, greatly enhancing the accuracy of the immunosensor chip. Ag@Au NCs closed by glutathione (GSH) were introduced in the ECL microfluidic immunosensor system with excellent and stable ECL performance. The synthesized CeO2-Au was applied as a coreaction promoter in the ECL signal amplification system, which made the result of HER2 detection more reliable. In addition, the designed microfluidic immunosensor chip integrated the biosensing system into a microchip, realizing rapid and accurate detection of HER2 by its high throughput and low usage. The developed short peptide ligand NARKFKG (NRK) achieved an effective connection between the antibody and nanocarrier for improving the detection efficiency of the sensor. The immunosensor chip had better storage stability and sensitivity than traditional detection methods, with a wide detection range from 10 fg·mL-1 to 100 ng·mL-1 and a low detection limit (LOD) of 3.29 fg·mL-1. In general, a microfluidic immunosensor platform was successfully constructed, providing a new idea for breast cancer (BC) clinical detection.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Oro , Mediciones Luminiscentes , Nanopartículas del Metal , Receptor ErbB-2 , Plata , Humanos , Receptor ErbB-2/análisis , Receptor ErbB-2/inmunología , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Plata/química , Técnicas Biosensibles/métodos , Oro/química , Inmunoensayo/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Límite de Detección , Cerio/química
6.
Cell Death Discov ; 10(1): 155, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538596

RESUMEN

Senile osteoporosis is mainly caused by osteoblasts attenuation, which results in reduced bone mass and disrupted bone remodeling. Numerous studies have focused on the regulatory role of m6A modification in osteoporosis; however, most of the studies have investigated the differentiation of bone marrow mesenchymal stem cells (BMSCs), while the direct regulatory mechanism of m6A on osteoblasts remains unknown. This study revealed that the progression of senile osteoporosis is closely related to the downregulation of m6A modification and methyltransferase-like 3 (METTL3). Overexpression of METTL3 inhibits osteoblast aging. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that METTL3 upregulates the stability of Hspa1a mRNA, thereby inhibiting osteoblast aging. Moreover, the results demonstrated that METTL3 enhances the stability of Hspa1a mRNA via m6A modification to regulate osteoblast aging. Notably, YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) participates in stabilizing Hspa1a mRNA in the METTL3-mediated m6A modification process, rather than the well-known degradation function. Mechanistically, METTL3 increases the stability of Hspa1a mRNA in a YTHDF2-dependent manner to inhibit osteoblast aging. Our results confirmed the significant role of METTL3 in osteoblast aging and suggested that METTL3 could be a potential therapeutic target for senile osteoporosis.

8.
Geriatr Nurs ; 56: 225-236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38367545

RESUMEN

OBJECTIVE: This meta-analysis aims to investigate the effect of the Hospital Elder Life Program (HELP) on the incidence of delirium, delirium scores, length of hospital stay, and incidence of falls. METHODS: Four databases (PubMed, Embase, Cochrane Library, and Web of Science) were searched from inception until January 18, 2024. The search specifically targeted randomized controlled trials (RCTs). Two independent researchers conducted literature screening, quality assessment, and data extraction. The meta-analysis was performed using Review Manager 5.4.1 and Stata 15.1 software. RESULTS: The final analysis included a total of 9 RCTs with 2583 patients. The findings from the meta-analysis indicated that HELP was found to considerably reduce the incidence of delirium and the length of hospital stay when compared to the control group. Nevertheless, no statistically significant differences were observed between the two groups in terms of delirium scores and fall rates. CONCLUSION: In this meta-analysis, HELP can effectively reduce the incidence of delirium and lead to a shorter hospital stay.


Asunto(s)
Accidentes por Caídas , Delirio , Tiempo de Internación , Delirio/prevención & control , Delirio/epidemiología , Humanos , Incidencia , Tiempo de Internación/estadística & datos numéricos , Anciano , Accidentes por Caídas/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos como Asunto
9.
Immunology ; 172(2): 181-197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38269617

RESUMEN

Immune system imbalances contribute to the pathogenesis of several different diseases, and immunotherapy shows great therapeutic efficacy against tumours and infectious diseases with immune-mediated derivations. In recent years, molecules targeting the programmed cell death protein 1 (PD-1) immune checkpoint have attracted much attention, and related signalling pathways have been studied clearly. At present, several inhibitors and antibodies targeting PD-1 have been utilized as anti-tumour therapies. However, increasing evidence indicates that PD-1 blockade also has different degrees of adverse side effects, and these new explorations into the therapeutic safety of PD-1 inhibitors contribute to the emerging concept that immune normalization, rather than immune enhancement, is the ultimate goal of disease treatment. In this review, we summarize recent advancements in PD-1 research with regard to immune normalization and targeted therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Animales , Inmunoterapia/métodos , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA