Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135069, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944988

RESUMEN

The frequent detection of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in various environments has raised concerns owing to its comparable or even higher environmental persistence and toxicity than perfluorooctane sulfonate (PFOS). This study investigated the plasma degradation of F-53B for the first time using a water film plasma discharge system. The results revealed that F-53B demonstrated a higher rate constant but similar defluorination compared to PFOS, which could be ascribed to the introduction of the chlorine atom. Successful elimination (94.8-100 %) was attained at F-53B initial concentrations between 0.5 and 10 mg/L, with energy yields varying from 15.1 to 84.5 mg/kWh. The mechanistic exploration suggested that the decomposition of F-53B mainly occurred at the gas-liquid interface, where it directly reacted with reactive species generated by gas discharge. F-53B degradation pathways involving dechlorination, desulfonation, carboxylation, C-O bond cleavage, and stepwise CF2 elimination were proposed based on the identified byproducts and theoretical calculations. Furthermore, the demonstrated effectiveness in removing F-53B in various coexisting ions and water matrices highlighted the robust anti-interference ability of the treatment process. These findings provide mechanistic insights into the plasma degradation of F-53B, showcasing the potential of plasma processes for eliminating PFAS alternatives in water.

2.
Front Oncol ; 14: 1340859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884095

RESUMEN

Background: Glomus tumors are typically benign soft tissue tumors that occur at the extremities; malignant and viscerally occurring cases are extremely rare. Case presentation: We report a 49-year old male patient with a malignant esophageal glomus tumor that was complicated by lung and liver metastases. Genetic test results guided the patient's individualized treatment. Consequently, treatment with Anlotinib combined with Tislelizumab achieved significant clinical benefits. Conclusion: Our case report demonstrates that immunotherapy combined with anti-angiogenic therapy in patients with malignant esophageal glomus tumors can achieve significant efficacy and suggests the potential value of next-generation sequencing (NGS) detection in guiding personalized treatments in patients with malignant esophageal glomus tumors.

3.
J Org Chem ; 89(12): 8447-8457, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38832810

RESUMEN

An efficient and practical strategy for the construction of pyrrolo[3,4-c]isoquinolines via Rh(III)-catalyzed cascade C-H activation and subsequential annulation process from easily available O-methyl aryloximes and maleimides has been disclosed. This facile protocol does not require any inert atmosphere protection with good efficiency in a low loading of catalyst and exhibits good functional group tolerance and broad substrate scope. Notably, the as-prepared products show potential photophysical properties.

4.
J Org Chem ; 89(12): 8420-8434, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38836769

RESUMEN

An elegant and highly concise strategy for the construction of coumarin-functionalized pyrrolo[2,1-a]isoquinolines from available propargylamines and isoquinolinium N-ylides has been disclosed. In this reaction, isoquinolinium N-ylides acted as a C2 synthon to form a coumarin ring as well as a 1,3-dipole to construct a pyrrole ring in a single pot. This cascade process involves 1,4-conjugate addition/lactonization/1,3-dipolar cycloaddition to construct four chemical bonds (one C-O bond and three C-C bonds) and two new heterocyclic skeletons. Additionally, most of these compounds showed good fluorescence properties and exhibited high molar extinction coefficient and large Stokes shifts.

5.
Foods ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38890909

RESUMEN

Numerous research studies have shown that moderate physical exercise exerts positive effects on gastrointestinal tract health and increases the variety and relative number of beneficial microorganisms in the intestinal microbiota. Increasingly, studies have shown that the gut microbiota is critical for energy metabolism, immunological response, oxidative stress, skeletal muscle metabolism, and the regulation of the neuroendocrine system, which are significant for the physiological function of exercise. Dietary modulation targeting the gut microbiota is an effective prescription for improving exercise performance and alleviating exercise fatigue. This article discusses the connection between exercise and the makeup of the gut microbiota, as well as the detrimental effects of excessive exercise on gut health. Herein, we elaborate on the possible mechanism of the gut microbiota in improving exercise performance, which involves enhancing skeletal muscle function, reducing oxidative stress, and regulating the neuroendocrine system. The effects of dietary nutrition strategies and probiotic supplementation on exercise from the perspective of the gut microbiota are also discussed in this paper. A deeper understanding of the potential mechanism by which the gut microbiota exerts positive effects on exercise and dietary nutrition recommendations targeting the gut microbiota is significant for improving exercise performance. However, further investigation is required to fully comprehend the intricate mechanisms at work.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 330-334, 2024 May 30.
Artículo en Chino | MEDLINE | ID: mdl-38863103

RESUMEN

Pulse rate and blood oxygen levels are crucial physiological parameters that reflect physiological and pathological information within the human body. The system designs a wireless pulse wave monitoring system utilizing a flexible reflective probe and the AFE4490, which is capable of monitoring pulse wave and blood oxygen levels on the human forehead. The system is predominantly based on a reflective flexible probe, the AFE4490, a power supply module, a control microcontroller unit (MCU), and a Wi-Fi module. Post-processing by a slave computer, the collected pulse wave data is wirelessly transmitted to a smartphone. The real-time pulse waveform, pulse rate, and blood oxygen levels are displayed on an application. Following relevant tests and verifications, the system can accurately detect pulse wave signals, meet the requirements for wearable technology, and possesses significant market application potential.


Asunto(s)
Tecnología Inalámbrica , Monitoreo Fisiológico/instrumentación , Humanos , Análisis de la Onda del Pulso/instrumentación , Teléfono Inteligente , Frecuencia Cardíaca , Oxígeno , Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles
7.
Poult Sci ; 103(8): 103903, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38908121

RESUMEN

Carcass appearance is important economic trait, which affects customers in making purchase decisions. Both density and diameter of feather follicles are two important indicators of carcass appearance. However, the regulatory network and key genes be involved in feather follicle development remain poorly understood. To identify key genes and modules that involved in feather follicle development in chickens, 16 transcriptome datasets of Wannan chickens skin tissue (3 birds at the E9, E11, and E14, respectively, and 7 birds at the 12W) were used for weighted gene co-expression network analysis (WGCNA) analysis, and 12 skin tissue samples (3 birds for each stage) were selected for DEGs analysis. A total of 5,025, 2,337, and 10,623 DEGs were identified in 3 comparison groups, including the E9 vs. E11, the E11 vs. E14, and the E14 vs. 12W. Additionally, 31 co-expression gene modules were identified by WGCNA and the dark-orange, cyan, and blue module were found to be significantly associated with feather follicle development (p < 0.01). In total, 92,898 and 8,448 hub genes were obtained in the dark-orange, cyan, and blue modules, respectively. We focused on the cyan and blue modules, as 6 and 336 hub genes of these modules were identified to overlap with the DEGs of the three comparison groups, respectively. The 6 overlapped genes such as LAMC2, COL6A3, and COL6A2 etc., were over-represented in 12 categories such as focal adhesion and ECM-receptor interaction signaling pathway. Among the 336 genes that overlapped between the blue module and different DEGs comparison groups several genes including WNT7A and WNT9B were enriched in Wnt and ECM-receptor interaction signaling pathway. These results suggested that the LAMC2, COL6A3, COL6A2, WNT7A, and WNT9B genes may play a crucial role in the regulation of feather follicle development in Wannan chickens. Our results provided a reference for the molecular regulatory network and key genes in the development of feather follicles and contribute to molecular breeding for carcass appearance traits in chickens.

8.
Cardiooncology ; 10(1): 35, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863010

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICIs)-associated myocarditis was a rare yet severe complication observed in individuals undergoing immunotherapy. This study investigated the immune status and characteristics of patients diagnosed with ICIs- associated myocarditis. METHODS: A total of seven patients diagnosed with ICIs-associated myocarditis were included in the study, while five tumor patients without myocarditis were recruited as reference controls. Additionally, 30 healthy individuals were recruited as blank controls. Biochemical indices, electrocardiogram, and echocardiography measurements were obtained both prior to and following the occurrence of myocarditis. High-throughput sequencing of T cell receptor (TCR) was employed to assess the diversity and distribution characteristics of TCR CDR3 length, as well as the diversity of variable (V) and joining (J) genes of T lymphocytes in peripheral blood. RESULTS: In the seven patients with ICIs-associated myocarditis, Troponin T (TNT) levels exhibited a significant increase following myocarditis, while other parameters such as brain natriuretic peptide (BNP), QTc interval, and left ventricular ejection fraction (LVEF) did not show any significant differences. Through sequencing, it was observed that the diversity and uniformity of CDR3 in the ICIs-associated myocarditis patients were significantly diminished. Additionally, the distribution of CDR3 nucleotides deviated from normality, and variations in the utilization of V and J gene segments. CONCLUSION: The reconstitution of the TCR immune repertoire may play a pivotal role in the recognition of antigens in patients with ICIs-associated myocarditis.

9.
Food Chem ; 456: 140008, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38870816

RESUMEN

Dual-enzyme co-embedded materials have shown high potential for achieving efficient detection due to the convenience of two-enzyme cascade reactions. Herein, we developed a dual-enzyme hybrid microsphere (HM) based biosensor to detect diamines (histamine was included for ease of description) in aquatic products. The HM was made from diamine oxidase, horseradish peroxidase, and copper phosphate through the biomineralization method. Under optimal conditions, the system displayed linear color response to histamine of different concentrations ranging from 0 to 200 µg/mL. The detection limit of histamine was 0.15 µg/mL, showing higher sensitivity than the two-step free enzyme assay. Moreover, the detection system exhibited good specificity to diamines. The method was used to detect diamines in commercial samples, and the results were compared with those measured by the high-performance liquid chromatography method. Overall, the proposed assay exhibited high potential in diamine quantification and was readily extended to other cascade enzymatic reaction-based detection strategies.

10.
Heliyon ; 10(11): e32187, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868075

RESUMEN

PAXLOVID™ (Co-packaging of Nirmatrelvir with Ritonavir) has been approved for the treatment of Coronavirus Disease 2019 (COVID-19). The goal of the experiment was to create an accurate and straightforward analytical method using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to simultaneously quantify nirmatrelvir and ritonavir in rat plasma, and to investigate the pharmacokinetic profiles of these drugs in rats. After protein precipitation using acetonitrile, nirmatrelvir, ritonavir, and the internal standard (IS) lopinavir were separated using ultra performance liquid chromatography (UPLC). This separation was achieved with a mobile phase composed of acetonitrile and an aqueous solution of 0.1% formic acid, using a reversed-phase column with a binary gradient elution. Using multiple reaction monitoring (MRM) technology, the analytes were detected in the positive electrospray ionization mode. Favorable linearity was observed in the calibration range of 2.0-10000 ng/mL for nirmatrelvir and 1.0-5000 ng/mL for ritonavir, respectively, within plasma samples. The lower limits of quantification (LLOQ) attained were 2.0 ng/mL for nirmatrelvir and 1.0 ng/mL for ritonavir, respectively. Both drugs demonstrated inter-day and intra-day precision below 15%, with accuracies ranging from -7.6% to 13.2%. Analytes were extracted with recoveries higher than 90.7% and without significant matrix effects. Likewise, the stability was found to meet the requirements of the analytical method under different conditions. This UPLC-MS/MS method, characterized by enabling accurate and precise quantification of nirmatrelvir and ritonavir in plasma, was effectively utilized for in vivo pharmacokinetic studies in rats.

11.
Free Radic Biol Med ; 222: 361-370, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945456

RESUMEN

BACKGROUND: To date, Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disease associated with clinical complications. Dietary fatty acids have been suggested to be involved in preventing or reversing the accumulation of hepatic fat. However, contradicting roles of monounsaturated fatty acids to the liver have been implicated in various human and murine models, mainly due to the insolubility nature of fatty acids. METHODS: High pressure homogenization methods were used to fabricate oleic acid embedded lipid nanoparticles (OALNs). The in vitro and in vivo models were used to validate the physiological effect of this OALNs via various cellular and molecular approaches including cell viability essay, fluorescent staining, electron microscope, RNAseq, qPCR, Western blots, and IHC staining. RESULTS: We successfully fabricated OALNs with enhanced stability and solubility. More importantly, lipid accumulation was successfully induced in hepatocytes via the application of OALNs in a dose-dependent manner. Overload of OALNs resulted in ROS accumulation and apoptosis of hepatocytes dose-dependently. With the help of transcriptome sequencing and traditional experimental approaches, we demonstrated that the lipotoxic effect induced by OALNs was exerted via the DDIT3/BCL2/BAX/Caspases signaling. Moreover, we also verified that OALNs induced steatosis and subsequent apoptosis in the liver of mice via the activation of DDIT3 in vivo. CONCLUSIONS: In all, our results established a potential pathogenic model of NAFLD for further studies and indicated the possible involvement of DDIT3 signaling in abnormal steatosis process of the liver.

12.
Medicine (Baltimore) ; 103(24): e38561, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875409

RESUMEN

Several studies have reported a potential association between the gut microbiota (GM) and scoliosis. However, the causal relationship between GM and scoliosis and the role of inflammatory factors (IFs) as mediators remain unclear. This study aimed to analyze the relationship between GM, IFs, and scoliosis. We investigated whether IFs act as mediators in pathways from the GM to scoliosis. Additionally, using reverse Mendelian randomization (MR) analysis, we further investigated the potential impact of genetic predisposition to scoliosis on the GM and IFs. In this study, we searched for publicly available genome-wide association study aggregate data and utilized the MR method to establish bidirectional causal relationships among 211 GM taxa, 91 IFs, and scoliosis. To ensure the reliability of our research findings, we employed 5 MR methods, with the inverse variance weighting approach serving as the primary statistical method, and assessed the robustness of the results through various sensitivity analyses. Additionally, we investigated whether IFs mediate pathways from GM to scoliosis. Three negative causal correlations were observed between the genetic predisposition to GM and scoliosis. Additionally, both positive and negative correlations were found between IFs and scoliosis, with 3 positive and 3 negative correlations observed. IFs do not appear to act as mediators in the pathway from GM to scoliosis. In conclusion, this study demonstrated a causal association between the GM, IFs, and scoliosis, indicating that IFs are not mediators in the pathway from the GM to scoliosis. These findings offer new insights into prevention and treatment strategies for scoliosis.


Asunto(s)
Microbioma Gastrointestinal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Escoliosis , Escoliosis/genética , Humanos , Microbioma Gastrointestinal/genética , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre
13.
Artículo en Inglés | MEDLINE | ID: mdl-38702912

RESUMEN

The shapes of micro- and nano-products have profound influences on their functional performances, which has not received sufficient attention during the past several decades. Electrohydrodynamic atomization (EHDA) techniques, mainly include electrospinning and electrospraying, are facile in manipulate their products' shapes. In this review, the shapes generated using EHDA for modifying drug release profiles are reviewed. These shapes include linear nanofibers, round micro-/nano-particles, and beads-on-a-string hybrids. They can be further divided into different kinds of sub-shapes, and can be explored for providing the desired pulsatile release, sustained release, biphasic release, delayed release, and pH-sensitive release. Additionally, the shapes resulted from the organizations of electrospun nanofibers are discussed for drug delivery, and the shapes and inner structures can be considered together for developing novel drug delivery systems. In future, the shapes and the related shape-performance relationships at nanoscale, besides the size, inner structure and the related structure-performance relationships, would further play their important roles in promoting the further developments of drug delivery field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Nanofibras/química , Animales , Nanopartículas/química , Hidrodinámica
14.
Biomed Pharmacother ; 175: 116421, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719708

RESUMEN

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.


Asunto(s)
Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Flavonoides , Microsomas Hepáticos , Piperidinas , Pirimidinas , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Pirimidinas/farmacología , Pirimidinas/metabolismo , Animales , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ratas , Piperidinas/farmacología , Piperidinas/farmacocinética , Piperidinas/metabolismo , Polimorfismo Genético , Pirroles/farmacología , Pirroles/metabolismo
15.
Heliyon ; 10(9): e30433, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737233

RESUMEN

Salidroside (SAL), belonging to a kind of the main active ingredient of Rhodiola rosea, is extensively utilized for anti-hypoxia and prevention of altitude sickness in the plateau region of China. However, the research on the systemic changes induced by SAL at intracellular protein level is still limited, especially at protein phosphorylation level. These limitations hinder a comprehensive understanding of the regulatory mechanisms of SAL. This study aimed to investigate the potential molecular mechanism of SAL in ameliorating the acute myocardial hypoxia induced by cobalt chloride using integrated proteomics and phosphoproteomics. We successfully identified 165 differentially expressed proteins and 266 differentially expressed phosphosites in H9c2 cells following SAL treatment under hypoxic conditions. Bioinformatics analysis and biological experiment validation revealed that SAL significantly antagonized CoCl2-mediated cell cycle arrest by downregulating CCND1 expression and upregulating AURKA, AURKAB, CCND3 and PLK1 expression. Additionally, SAL can stabilize the cytoskeleton through upregulating the Kinesin Family (KIF) members expression. Our study systematically revealed that SAL had the ability to protect myocardial cells against CoCl2-induced hypoxia through multiple biological pathways, including enhancing the spindle stability, maintaining the cell cycle, relieving DNA damage, and antagonizing cell apoptosis. This study supplies a comprehension perspective on the alterations at protein and protein phosphorylation levels induced by SAL treatment, thereby expanded our knowledge of the anti-hypoxic mechanisms of SAL. Moreover, this study provides a valuable resource for further investigating the effects of SAL.

16.
Plant Cell ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723588

RESUMEN

Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defense activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors (PRRs), intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs), and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.

17.
Faraday Discuss ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807494

RESUMEN

Sulfur atoms serve as key players in diverse chemical processes, from astrochemistry at very low temperature to combustion at high temperature. Building upon our prior findings, showing cyclization to thiophenes following the reaction of ground-state sulfur atoms with dienes, we here extend this investigation to include many additional reaction products, guided by detailed theoretical predictions. The outcomes highlight the complex formation of products during intersystem crossing (ISC) to the singlet surfaces. Here, we employed crossed-beam velocity map imaging and high-level ab initio methods to explore the reaction of S(3P) with 1,3-butadiene and isoprene under single-collision conditions and in low-temperature flows. For the butadiene reaction, our experimental results show the formation of thiophene via H2 loss, a 2H-thiophenyl radical through H loss, and thioketene through ethene loss at a slightly higher collision energy compared to previous observations. Complementary Chirped-Pulse Fourier-Transform mmWave spectroscopy (CP-FTmmW) measurements in a uniform flow confirmed the formation of thioketene in the reaction at 20 K. For the isoprene reaction, we observed analogous products along with the 2H-thiophenyl radical arising from methyl loss and C3H4S (loss of ethene or H2 + acetylene). CP-FTmmW detected the formation of thioformaldehyde via loss of 1,3-butadiene, again in the 20 K flow. Coupled-cluster calculations on the pathways found by the automated kinetic workflow code KinBot support these findings and indicate ISC to the singlet surface, leading to the generation of various long-lived intermediates, including 5-membered heterocycles.

18.
Sci Total Environ ; 933: 173162, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735311

RESUMEN

Traditional rice-fish symbiosis systems efficiently use soil and water resources but the adverse effects of prolonged flooding on the stability of rice growth can be mitigated. The feasibility and efficacy of injecting micro-nano bubbles (MNBs) in rice-crayfish co-cultures was investigated in a 22-hectare field experiment conducted over five months. This injection significantly enhanced the growth of both rice and crayfish, and increased total nitrogen and phosphorus levels in the soil, thereby augmenting fertility. Analysis of dissolved oxygen (DO), water temperature and gene expression (rice and crayfish) clarified that micro-nano bubbles (MNBs) foster an optimal environment for rice root respiration, whereas rice establishes an optimal temperature for crayfish, thereby enhancing their activity and growth. Comparative analyses of gene expression profiles and metabolic pathway enrichment revealed that the injection of MNBs diversifies soil microbial communities and intensifies biological processes, such as plant hormone signal transduction. This was in marked contrast to the situation in our controls, rice monoculture (R) and micro-nano bubbles rice monoculture (MNB-R). The combination of rice-fish symbiosis with MNBs led to a 26.8 % increase in rice production and to an estimated 35 % improvement in economic efficiency. Overall, this research introduces an innovative and environmentally sustainable method to boost rice yields, thereby enhancing food security and providing additional income for farmers.


Asunto(s)
Astacoidea , Oryza , Animales , Astacoidea/fisiología , Técnicas de Cocultivo , Agricultura/métodos , Fósforo , Simbiosis , Nitrógeno , Suelo/química
19.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743874

RESUMEN

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

20.
Foods ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38790857

RESUMEN

Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA