RESUMEN
Precipitation is an important component of the hydrological cycle and has significant impact on ecological environment and social development, especially in arid areas where water resources are scarce. As a typical arid and semi-arid region, the Mongolian Plateau is ecologically fragile and highly sensitive to climate change. Reliable global precipitation data is urgently needed for the sustainable development over this gauge-deficient region. With high-quality estimates, fine spatiotemporal resolutions, and wide coverage, the state-of-the-art Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and European Center for Medium-range Weather Forecasts Reanalysis 5 (ERA5) have great potential for regional climatic, hydrological, and ecological applications. However, how they perform has not been well investigated on the Mongolian Plateau. Therefore, this study evaluated the performance of three IMERG V06 datasets (ER, LR and FR), two ERA5 products (ERA5-HRES and ERA5-Land), and their predecessors (TMPA-3B42 and ERA-Interim) over the region across 2001-2018. The results showed that all products broadly characterized seasonal precipitation cycles and spatial patterns, but only the three reanalysis products, IMERG FR and TMPA-3B42 could capture interannual and decadal variability. When describing daily precipitation, dataset performances ranked ERA5-Land > ERA5-HRES > ERA-Interim > IMERG FR > IMERG LR > IMERG ER > TMPA-3B42. All products showed deficiencies in overestimating weak precipitation and underestimating high-intensity precipitation. Besides, products performed best in agricultural lands and forests along the northern and south-eastern edges, followed by urban areas and grasslands closer to the center, and worst in the sparse vegetation and bare areas of the south-west. Due to a negative effect of topographic complexity, IMERG showed poor detection capabilities in forests. Accordingly, this research currently supports the applicability of reanalysis ERA5 data over the arid, topographically complex Mongolian Plateau, which can inform regional applications with different requirements.
Asunto(s)
Cambio Climático , Hidrología , BosquesRESUMEN
Association between fine particulate matter (PM2.5) and respiratory health has attracted great concern in China. Substantial epidemiological evidences confirm the correlational relationship between PM2.5 and respiratory disease in many Chinese cities. However, the causative impact of PM2.5 on respiratory disease remains uncertain and comparative analysis is limited. This study aims to explore and compare the correlational relationship as well as the causal connection between PM2.5 and upper respiratory tract infection (URTI) in two typical cities (Beijing, Shenzhen) with rather different ambient air environment conditions. The distributed lag nonlinear model (DLNM) was used to detect the correlational relationship between PM2.5 and URTI by revealing the lag effect pattern of PM2.5 on URTI. The convergent cross mapping (CCM) method was applied to explore the causal connection between PM2.5 and URTI. The results from DLNM indicate that an increase of 10 µg/m3 in PM2.5 concentration is associated with an increase of 1.86% (95% confidence interval: 0.74%-2.99%) in URTI at a lag of 13 days in Beijing, compared with 2.68% (95% confidence interval: 0.99-4.39%) at a lag of 1 day in Shenzhen. The causality detection with CCM quantitatively demonstrates the significant causative influence of PM2.5 on URTI in both two cities. Findings from the two methods consistently show that people living in low-concentration areas (Shenzhen) are less tolerant to PM2.5 exposure than those in high-concentration areas (Beijing). In general, our study highlights the adverse health effects of PM2.5 pollution on the general public in cities with various PM2.5 levels and emphasizes the needs for the government to provide appropriate solutions to control PM2.5 pollution, even in cities with low PM2.5 concentration.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , China/epidemiología , Ciudades , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Material Particulado/análisis , Material Particulado/toxicidadRESUMEN
Blue steel roof is advantageous for its low cost, durability, and ease of installation. It is generally used by industrial areas. The accurate and rapid mapping of blue steel roof is important for the preliminary assessment of inefficient industrial areas and is one of the key elements for quantifying environmental issues like urban heat islands. Here, the DeeplabV3+ semantic segmentation neural network based on GaoFen-2 images was used to analyze the quantity and spatial distribution of blue steel roofs in the Nanhai district, Foshan (including the towns of Shishan, Guicheng, Dali, and Lishui), which is the important manufacturing industry base of China. We found that: (1) the DeeplabV3+ performs well with an overall accuracy of 92%, higher than the maximum likelihood classification; (2) the distribution of blue steel roofs was not even across the whole study area, but they were evenly distributed within the town scale; and (3) strong positive correlation was observed between blue steel roofs area and industrial gross output. These results not only can be used to detect the inefficient industrial areas for regional planning but also provide fundamental data for studies of urban environmental issues.