RESUMEN
Background: Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods: We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results: â People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. â¡ We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ⢠Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ⣠Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⤠Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⥠The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⦠Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion: The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.
RESUMEN
INTRODUCTION: The course of maternal antiviral prophylaxis to prevent mother-to-child transmission of hepatitis B virus (HBV-MTCT) varies greatly, and it has not been demonstrated in a randomized controlled study. METHODS: In this multicenter, open-label, randomized controlled trial, eligible pregnant women with HBV DNA of 5.3-9.0 log10 IU/mL who received tenofovir alafenamide fumarate (TAF) from the first day of 33 gestational weeks to delivery (expected eight-week) or to four-week postpartum (expected twelve-week) were randomly enrolled at a 1:1 ratio and followed until six-month postpartum. All infants received standard immunoprophylaxis (hepatitis B immunoglobulin and vaccine). The primary endpoint was the safety of mothers and infants. The secondary endpoint was infants' HBV-MTCT rate at seven months of age. RESULTS: Among 119 and 120 intention-to-treat pregnant women, 115 and 116 women were followed until delivery, and 110 and 112 per-protocol mother-infant dyads in two groups completed the study. Overall, TAF was well tolerated, no one discontinued therapy due to adverse events (0/239, 0%, 95% confidence interval [CI] 0%-1.6%), and no infant had congenital defects or malformations at delivery (0/231, 0%, 95% CI 0%-1.6%). The infants' physical development at birth (n=231) and at seven months (n=222) were normal. Furthermore, 97.0% (224/231, 95% CI 93.9%-98.5%) of women achieved HBV DNA <5.3 log10 IU/mL at delivery. The intention-to-treat and per-protocol infants' HBV-MTCT rates were 7.1% (17/239, 95% CI 4.5%-11.1%) and 0% (0/222, 95% CI 0%-1.7%) at seven months of age. Comparatively, 15.1% (18/119, 95% CI 9.8%-22.7%) versus 18.3% (22/120, 95% CI 12.4%-26.2%) of women in the two groups had mildly elevated alanine aminotransferase levels at three-month and six-month postpartum, respectively (P=0.507); notably, no one experienced alanine aminotransferase flare (0% [0/119, 95% CI 0%-3.1%] versus 0% [0/120, 0%-3.1%]). DISCUSSION: Maternal TAF prophylaxis to prevent HBV-MTCT is generally safe and effective, and expected eight-week prenatal duration is feasible. ClinicalTrials.gov, NCT04850950.
RESUMEN
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Asunto(s)
Ferroptosis , Transducción de Señal , Humanos , Animales , Hipoxia/metabolismo , Hierro/metabolismo , Hipoxia de la CélulaRESUMEN
BACKGROUND: About 1/3 of primary biliary cholangitis (PBC) patients suffered from poor response worldwide. And these patients present intestinal disturbances. We aimed to identify signatures of microbiota and metabolites in PBC patients with poor response, comparing to patients with response. METHODS: This study enrolled 25 subjects (14 PBC patients with response and 11 PBC patients with poor response). Metatranscriptomics and metabolomics analysis were carried out on their fecal. RESULTS: PBC patients with poor response had significant differences in the composition of bacteria, characterized by decreased Gemmiger etc. and increased Ruminococcus etc. The differential microbiota functions characterized by decreased abundance of elongation factor Tu and elongation factor G base on the KO database, as well as decreased abundance of Replicase large subunit etc. based on the SWISS-PROT database. PBC with poor response also had significant differences in 17 kinds of bacterial metabolites, characterized by decreased level of metabolites vital in bile acids metabolism pathway (L-Cysteine etc.) and the all-trans-Retinoic acid, a kind of immune related metabolite. The altered microbiota was associated with the differential expressed metabolites and clinical liver function indicators. 1 bacterial genera, 2 bacterial species and 9 metabolites simultaneously discriminated PBC with poor response from PBC with response with high accuracy. CONCLUSION: PBC patients with poor response exhibit unique changes in microbiota and metabolite. Gut microbiota and metabolite-based algorithms could be used as additional tools for differential prediction of PBC with poor prognosis.
RESUMEN
The evaluation of pathobiome strains should be conducted at the strain level, involving the identification of the functional genes, while considering the impact of ecological niche and drug interactions. The safety, efficacy, and quality management of live biotherapeutic products (LBPs), especially pathobiome strains, have certain peculiarities. Promising development methods include the recombinant LBP and active metabolites.
RESUMEN
OBJECTIVE: To uncover the mechanisms underlying the development of colorectal cancer (CRC), we applied bioinformatic analyses to identify key genes and experimentally validated their possible roles in CRC onset and progression. METHODS: We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on differentially expressed genes (DEGs), constructed a protein-protein interaction (PPI) network to find the top 10 hub genes, and analyzed their expression in colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). We also studied the correlation between these genes and immune cell infiltration and prognosis and validated the expression of SLC9A2 in CRC tissues and cell lines using qRT-PCR and Western blotting. Functional experiments were conducted in vitro to investigate the effects of SLC9A2 on tumor growth and metastasis. RESULTS: We found 130 DEGs, with 45 up-regulated and 85 down-regulated in CRC. GO analysis indicated that these DEGs were primarily enriched in functions related to the regulation of cellular pH, zymogen granules, and transmembrane transporter activity. KEGG pathway analysis revealed that the DEGs played pivotal roles in pancreatic secretion, rheumatoid arthritis, and the IL-17 signaling pathway. We identified 10 hub genes: CXCL1, SLC26A3, CXCL2, MMP7, MMP1, SLC9A2, SLC4A4, CLCA1, CLCA4, and ZG16. GO enrichment analysis showed that these hub genes were predominantly involved in the positive regulation of transcription. Gene expression analysis revealed that CXCL1, CXCL2, MMP1, and MMP7 were highly expressed in CRC, whereas CLCA1, CLCA4, SLC4A4, SLC9A2, SLC26A3, and ZG16 were expressed at lower levels. Survival analysis revealed that 5 key genes were significantly associated with the prognosis of CRC. Both mRNA and protein expression levels of SLC9A2 were markedly reduced in CRC tissues and cell lines. Importantly, SLC9A2 overexpression in SW480 cells led to a notable inhibition of cell proliferation, migration, and invasion. Western blotting analysis revealed that the expression levels of phosphorylated ERK (p-ERK) and phosphorylated JNK (p-JNK) proteins were significantly increased, whereas there were no significant changes in the expression levels of ERK and JNK following SLC9A2 overexpression. Correlation analysis indicated a potential link between SLC9A2 expression and the MAPK signaling pathway. CONCLUSION: Our study suggests that SLC9A2 acts as a tumor suppressor through the MAPK pathway and could be a potential target for CRC diagnosis and therapy.
Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas , Intercambiadores de Sodio-Hidrógeno , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes , Genes Supresores de Tumor , Pronóstico , Mapas de Interacción de Proteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismoRESUMEN
BACKGROUND: Primary biliary cholangitis (PBC) is associated closely with the gut microbiota. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to cirrhosis. METHOD: This study focuses on utilizing the 16S rRNA gene sequencing method to screen for differences in gut microbiota in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis. RESULT: PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of Faecalibacterium and Gemmiger bacteria significantly decreases, while the abundance of Veillonella and Streptococcus significantly increases. Furthermore, machine learning methods identify Streptococcus and Gemmiger as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902). CONCLUSION: Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. Streptococcus and Gemmiger may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.
RESUMEN
Inorganic phosphorus (Pi) deficiency significantly impacts plant growth, development, and photosynthetic efficiency. This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient (Pi+) and Pi-starvation (Pi-) conditions in the field to assess photosynthetic phosphorus use efficiency (PPUE), defined as the ratio of AsatPi- to AsatPi+. A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene (ACP2) that responds strongly to phosphate availability. Overexpression and knockout of ACP2 led to a 67% increase and 32% decrease in PPUE, respectively, compared with wild type. Introduction of an elite allele A, by substituting the v5 SNP G with A, resulted in an 18% increase in PPUE in gene-edited ACP2 rice lines. The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression, resulting in an 11% increase in PPUE. Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine. In addition, serine levels increased significantly in the ACP2v8G-overexpression line, along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway. Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions. We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.
Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Fosfatos , Fotosíntesis , Serina , Oryza/genética , Oryza/metabolismo , Fotosíntesis/genética , Fosfatos/metabolismo , Fosfatos/deficiencia , Serina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismoRESUMEN
BACKGROUND: Blood stasis constitution in traditional Chinese medicine (TCM) is believed to render individuals more susceptible to metabolic diseases. However, the biological underpinnings of this constitutional imbalance remain unclear. METHODS: This study explored the association between blood stasis constitution, serum metabolic markers including uric acid (UA), high-density lipoprotein cholesterol (HDLC), their ratio (UHR), serum metabolites, and gut microbiota. Clinical data, fecal and serum samples were acquired from 24 individuals with a blood stasis constitution and 80 individuals with a balanced constitution among healthy individuals from Guangdong. Gut microbiota composition analysis and serum metabolomics analysis were performed. RESULTS: Females with a blood stasis constitution had higher UA levels, lower HDLC levels, and higher UHR in serum, suggesting a higher risk of metabolic abnormalities. Analysis of the gut microbiome revealed two distinct enterotypes dominated by Bacteroides or Prevotella. Intriguingly, blood stasis subjects were disproportionately clustered within the Bacteroides-rich enterotype. Metabolomic analysis identified subtle differences between the groups, including lower phenylalanine and higher trimethylaminoacetone levels in the blood stasis. Several differential metabolites displayed correlations with HDLC, UA, or UHR, unveiling potential new markers of metabolic dysregulation. CONCLUSIONS: These findings elucidate the intricate interplay between host constitution, gut microbiota, and serum metabolites. The concept of blood stasis offers a unique perspective to identify subtle alterations in microbiome composition and metabolic pathways, potentially signaling underlying metabolic vulnerability, even in the presence of ostensibly healthy profiles. Continued investigation of this TCM principle may reveal critical insights into the early biological processes that foreshadow metabolic deterioration.
Asunto(s)
Medicina Tradicional China , Ácido Úrico , Humanos , Femenino , HDL-Colesterol , Heces , Metabolómica , BiomarcadoresRESUMEN
Background & Aims: Association studies have greatly refined the important role of the major histocompatibility complex (MHC) region in autoimmune hepatitis (AIH). However, the effects of human leucocyte antigen (HLA) polymorphisms on AIH are not well established. The aim of this study is to systematically characterise the association of MHC variants with AIH in our well-defined cohort of patients. Methods: We performed an imputation-based analysis on the extensive association observed within the MHC region using the Han-MHC reference panel, and tested the comprehensive associations of HLA polymorphisms with AIH in 1622 Chinese AIH type 1 patients and 10,466 population controls. Results: A total of 588 HLA variants were significantly associated with AIH, with HLA-B∗35:01 (p = 8.17 × 10-304; odds ratio [OR] = 7.32) contributing the strongest signal. Stepwise conditional analysis revealed additional independent signals at HLA-B∗08:01 (p = 1.35 × 10-33; OR = 4.26) and rs7765379 (p = 5.08 × 10-18; OR = 1.66). A strong link between the lead HLA variant and clinical phenotypes of AIH was observed: patients with HLA-B∗35:01 were less frequently positive for ANA and tended to have higher serum AST and ALT levels at diagnosis, but lower serum IgG levels. Conclusions: Our study reveals three novel and independent variants at HLA-B∗35:01, HLA-B∗08:01, and rs7765379 associated with AIH across the whole MHC region in the Han Chinese population. The findings illustrate the value of the MHC region in AIH and provide a new perspective for the immunogenetics of AIH. Impact and implications: This study revealed three novel and independent variants associated with autoimmune hepatitis across the whole major histocompatibility complex region in the Han Chinese population. These findings are significant in identifying autoantigens, providing insights into the activation of the autoimmune processes, and further advancing our understanding of the immunogenetic basis underlying autoimmune hepatitis.
RESUMEN
Herein, it is reported that a series of trichloromethyl/dichloromethyl substituted benzimidazole derivatives have been synthesized by dechlorination of CCl4/CHCl3 to form polychloromethyl radicals and cyclization with an unactivated olefin under a purple LED lamp. The protocol features a wide substrate scope, high atom economy, and excellent regioselectivity, and is easy to scale up.
RESUMEN
The root architecture of a range of host plants is altered in response to Ralstonia solanacearum infection. This work aimed to identify host genes involved in root development during R. solanacearum infection. A deficient mutant of the type III secretion system regulator hrpB was created in R. solanacearum GMI1000. The hrpB mutant was impaired in virulence but showed a similar suppressive effect as wild-type GMI1000 on tomato root development. Based on comparative transcriptome analysis, 209 genes were found that showed the same changed expression pattern in GMI1000 and hrpB mutant infected roots relative to uninoculated roots. Among them, the wall-associated receptor kinase WAKL20 was substantially downregulated in GMI1000 and hrpB mutant infected roots. Knockdown of WAKL20 led to a shorter primary root length and fewer lateral roots in tomato as well as in Nicotiana benthamiana. The WAKL20 is a pivotal target suppressed by R. solanacearum to shape the altered root development during infection.
RESUMEN
The multi-objective particle swarm optimization algorithm has several drawbacks, such as premature convergence, inadequate convergence, and inadequate diversity. This is particularly true for complex, high-dimensional, multi-objective problems, where it is easy to fall into a local optimum. To address these issues, this paper proposes a novel algorithm called IMOPSOCE. The innovations for the proposed algorithm mainly contain three crucial factors: 1) an external archive maintenance strategy based on the inflection point distance and distribution coefficient is designed, and the comprehensive indicator (CM) is used to remove the non-dominated solutions with poor comprehensive performance to improve the convergence of the algorithm and diversity of the swarm; 2) using the random inertia weight strategy to efficiently control the movement of particles, balance the exploration and exploitation capabilities of the swarm, and avoid excessive local and global searches; and 3) offering different flight modes for particles at different levels after each update to further enhance the optimization capacity. Finally, the algorithm is tested on 22 typical test functions and compared with 10 other algorithms, demonstrating its competitiveness and outperformance on the majority of test functions.
RESUMEN
Background: Stroke ranks first among disease fatalities, and those who do survive stroke are prone to cognitive impairment. The aim of this study was to explore the clinical characteristics of post stroke cognitive impairment (PSCI) and the risk factors of PSCI using multivariate logistic regression. Methods: January 2018 to January 2021, the clinical data of 120 patients treated for cerebral ischemic stroke (CIS) at Chengde Central Hospital were retrospectively analyzed. In this study, patients were divided into 2 groups: a control group and a cognitive impairment group. The clinical characteristics of cognitive impairment following CIS were determined using multivariate logistic regression analysis to examine the risk factors and identify clinical implications. Results: This study included the assessment of overall cognitive function and daily living activities of 120 participants, 68 of whom experienced cognitive impairment, representing an incidence of 57%, while 43% patients represented no cognitive impairment after CIS. After the careful analysis of the data, there were remarkable differences in age, sex, education level, stroke history, infarction area, and infarction location (P<0.05). There was no remarkable difference in the history of hypertension, diabetes, atrial fibrillation, carotid intima thickness, smoking, or drinking (P>0.05). The degree of white matter degeneration, brain atrophy, and dominant hemisphere involvement was higher in the cognitive impairment group (P<0.05). The results of multivariate logistic regression analysis indicated that sex, age, education level, stroke history, infarction size, and infarction location were the main risk factors for cognitive impairment after CIS (P<0.05). Conclusions: Patients with cognitive impairment after CIS have imaging features of white matter degeneration, brain atrophy, and involvement of dominant hemispheres. The results of multivariate logistic regression analysis indicated that sex, age, education level, stroke history, infarct size, and infarct location were main risk factors of cognitive impairment after CIS.
RESUMEN
Nasopharyngeal carcinoma (NPC) is a common malignant epithelial tumor of the head and neck that often exhibits local recurrence and distant metastasis. The molecular mechanisms are understudied, and effective therapeutic targets are still lacking. In our study, we found that the transcription factor ZIC2 was highly expressed in NPC. Although ZIC family members play important roles in neural development and carcinogenesis, the specific mechanism and clinical significance of ZIC2 in the tumorigenesis and immune regulation of NPC remain elusive. Here, we first reported that high expression of ZIC2 triggered the secretion of MCSF in NPC cells, induced M2 polarization of tumor-associated macrophages (TAMs), and affected the secretion of TAM-related cytokines. Mechanistically, ChIP-seq and RNA-seq analyses identified JUNB as a downstream target of ZIC2. Furthermore, ZIC2 was significantly enriched in the promoter site of JUNB and activated JUNB promoter activity, as shown by ChIP-qPCR and luciferase assays. In addition, JUNB and MCSF participated in ZIC2-induced M2 TAMs polarization. Thus, blocking JUNB and MCSF could reverse ZIC2-mediated M2 TAMs polarization. Moreover, Kaplan-Meier survival analyses indicated that high expression of ZIC2, JUNB, and CD163 was positively associated with a poor prognosis in NPC. Overexpression of ZIC2 induced tumor growth in vivo, with the increase of JUNB, MCSF secretion, and CD163. In summary, our study implies that ZIC2 induces M2 TAM polarization, at least in part through regulation of JUNB/MCSF and that ZIC2, JUNB, and CD163 can be utilized as prognostic markers for NPC and as therapeutic targets for cancer immunotherapy.
Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinogénesis , Neoplasias Nasofaríngeas/genética , Macrófagos , Proteínas Nucleares , Factores de Transcripción/genéticaRESUMEN
Despite being easy to implement and having fast convergence speed, balancing the convergence and diversity of multi-objective particle swarm optimization (MOPSO) needs to be further improved. A multi-objective particle swarm optimization with reverse multi-leaders (RMMOPSO) is proposed as a solution to the aforementioned issue. First, the convergence strategy of global ranking and the diversity strategy of mean angular distance are proposed, which are used to update the convergence archive and the diversity archive, respectively, to improve the convergence and diversity of solutions in the archives. Second, a reverse selection method is proposed to select two global leaders for the particles in the population. This is conducive to selecting appropriate learning samples for each particle and leading the particles to quickly fly to the true Pareto front. Third, an information fusion strategy is proposed to update the personal best, to improve convergence of the algorithm. At the same time, in order to achieve a better balance between convergence and diversity, a new particle velocity updating method is proposed. With this, two global leaders cooperate to guide the flight of particles in the population, which is conducive to promoting the exchange of social information. Finally, RMMOPSO is simulated with several state-of-the-art MOPSOs and multi-objective evolutionary algorithms (MOEAs) on 22 benchmark problems. The experimental results show that RMMOPSO has better comprehensive performance.
RESUMEN
Background: Angiogenesis is one of the histologically predominant characteristics of psoriasis. Vascular endothelial growth factor (VEGF) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3) have critical effects on angiogenesis. Both these proteins are vital proangiogenic factors in tumor occurrence and progression; however, the relationship between EDIL3 and VEGF with psoriasis remains unclear. Objective: We aimed to elucidate the role of EDIL3 and VEGF and the involved mechanisms in psoriasis-associated angiogenesis. Methods: EDIL3 and VEGF expression in cutaneous tissue was determined by immunohistochemical assay. The effects of EDIL3 on VEGF, VEGFR2, and the growth, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were analyzed by Western blotting assay, cell counting kit-8 assay, Transwell assay, and Matrigel tube formation assay. Results: EDIL3 and VEGF levels in psoriatic lesions significantly increased as compared to those in normal individuals and showed a positive relationship with the Psoriasis Area and Severity Index. The downregulation of EDIL3 decreased VEGF and VEGFR2 expression in HUVECs. Moreover, the decreased expression of EDIL3 and VEGF reduced the growth, invasion, and tube formation abilities of HUVECs, while EDIL3 resistance to VEGF and VEGFR2 was restored by using the EDIL3 recombinant protein. Conclusion: These results suggest that psoriasis is also characterized by EDIL3 and VEGF-mediated angiogenesis. Thus, EDIL3 and VEGF could serve as novel targets for treating psoriasis.
RESUMEN
OBJECTIVE: To investigate the clinical characteristics of systemic lupus erythematosus accompanied by autoimmune liver cirrhosis (SLE-ALC) patients and differences from the non-cirrhosis group. METHODS: Forty-three patients with SLE-ALC were enrolled in this study from 2653 patients with SLE in Peking University People's Hospital. A descriptive case-control study was performed between SLE-ALC patients and the entry time-matched non-cirrhosis group. RESULTS: Among the 43 SLE-ALC patients, 41 (95.3%) were female. Eight patients (18.6%) were first found to have cirrhosis and then diagnosed with SLE. Eighteen patients (41.9%) had jaundice and 27 (62.8%) had esophageal and gastric varices. The age of SLE-ALC patients was 51.1 ± 17.2 years, which was significantly older than the non-cirrhosis group (P < 0.001). Lung involvement was more common as initial manifestations in SLE-ALC patients during the SLE course (P=0.027). Compared with the non-cirrhosis group, SLE-ALC patients had worse liver function. A significantly higher rate of hematological system involvement (anemia, leucopenia, and thrombocytopenia) and a higher level of immunoglobulins were observed in SLE-ALC patients (P<0.05). Moreover, SLE-ALC patients displayed a lower positive rate of anti-double-stranded DNA and anti-ribosomal P protein (P<0.05). The most common radiologic manifestations are ascitic fluid (72.1%) and splenomegaly (71.4%) in SLE-ALC patients. Six SLE-ALC patients underwent liver biopsy, and interface hepatitis was present in all patients. CONCLUSIONS: Cirrhosis is rare in SLE patients but is manifested as a unique pattern of clinical features characterized by late-onset age, lung involvement, high immunoglobulins, and impaired liver function.