Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960902

RESUMEN

Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale.

2.
Front Public Health ; 12: 1413604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957204

RESUMEN

Background: We aimed to determine the trend of TB-related deaths during the COVID-19 pandemic. Methods: TB-related mortality data of decedents aged ≥25 years from 2006 to 2021 were analyzed. Excess deaths were estimated by determining the difference between observed and projected mortality rates during the pandemic. Results: A total of 18,628 TB-related deaths were documented from 2006 to 2021. TB-related age-standardized mortality rates (ASMRs) were 0.51 in 2020 and 0.52 in 2021, corresponding to an excess mortality of 10.22 and 9.19%, respectively. Female patients with TB demonstrated a higher relative increase in mortality (26.33 vs. 2.17% in 2020; 21.48 vs. 3.23% in 2021) when compared to male. Female aged 45-64 years old showed a surge in mortality, with an annual percent change (APC) of -2.2% pre-pandemic to 22.8% (95% CI: -1.7 to 68.7%) during the pandemic, corresponding to excess mortalities of 62.165 and 99.16% in 2020 and 2021, respectively; these excess mortality rates were higher than those observed in the overall female population ages 45-64 years in 2020 (17.53%) and 2021 (33.79%). Conclusion: The steady decline in TB-related mortality in the United States has been reversed by COVID-19. Female with TB were disproportionately affected by the pandemic.


Asunto(s)
COVID-19 , Tuberculosis , Humanos , COVID-19/mortalidad , Femenino , Persona de Mediana Edad , Masculino , Estados Unidos/epidemiología , Adulto , Anciano , Tuberculosis/mortalidad , Factores Sexuales , Anciano de 80 o más Años , Pandemias
3.
Global Spine J ; : 21925682241255894, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757696

RESUMEN

STUDY DESIGN: Bioinformatics analysis of Gene Expression Omnibus (GEO). OBJECTIVE: Ossification of the ligamentum flavum (OLF) and ankylosing spondylitis (AS) represent intricate conditions marked by the gradual progression of endochondral ossification. This investigation endeavors to unveil common biomarkers associated with heterotopic ossification and explore the potential molecular regulatory mechanisms. METHODS: Microarray and RNA-sequencing datasets retrieved from the Gene Expression Omnibus (GEO) repository were harnessed to discern differentially expressed genes (DEGs) within the OLF and AS datasets. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) was implemented to pinpoint co-expression modules linked to OLF and AS. Common genes were further subjected to an examination of functional pathway enrichment. Moreover, hub intersection genes were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by an evaluation of diagnostic performance in external OLF and AS cohorts. Lastly, an analysis of immune cell infiltration was conducted to scrutinize the correlation of immune cell presence with shared biomarkers in OLF and AS. RESULTS: A total of 1353 and 91 Differentially Expressed Genes (DEGs) were identified in OLF and AS, respectively. Using the Weighted Gene Co-expression Network Analysis (WGCNA), 2 modules were found to be notably significant for OLF and AS. The integrative bioinformatic analysis revealed 3 hub genes (MAB21L2, MEGF10, ISLR) as shared risk biomarkers, with MAB21L2 being the central focus. Receiver Operating Characteristic (ROC) analysis exhibited a strong diagnostic potential for these hub genes. Gene Ontology (GO) analysis indicated their involvement in the positive regulation of myoblast proliferation. Notably, MAB21L2 was singled out as the optimal common biomarker for OLF and AS. Furthermore, an analysis of immune infiltration demonstrated a correlation between MAB21L2 expression and changes in immune cells. Activated CD8 T cells were identified as shared differential immune infiltrating cells significantly linked to MAB21L2 in both OLF and AS. CONCLUSION: This study represents the first instance of identifying MAB21L2 as a prospective diagnostic marker for patients contending with OLF associated with AS. The research results indicate that the ECM-receptor interaction and the cell-cell adhesion may play a role in both disease processes. This newfound knowledge not only enhances our understanding of the pathogenesis behind spinal ligament ossification but also uncovers potential targets for therapeutic interventions.

4.
PLoS One ; 19(4): e0298404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598496

RESUMEN

AIM: Dental erosion is a chemical-mechanical process that leads to the loss of dental hard tissues. This study aimed to investigate the effect of pomegranate juice on the enamel. METHODS: Enamel blocks were randomly divided into three groups: deionized water, cola, and pomegranate juice. The blocks were immersed in the solutions four times a day for 14 days, and stored in artificial saliva for the remaining period. The surface hardness was measured on days 7 and 14. The surface structures of the demineralized blocks were observed via scanning electron microscopy (SEM), and the depth of demineralization was observed via confocal laser scanning microscopy (CLSM). The pH, calcium, and phosphorus levels of the three solutions were analyzed. RESULTS: The microhardness values of the blocks in the pomegranate juice and cola groups decreased with the increase in the demineralization time. The blocks in the pomegranate juice group exhibited large fractures in the enamel column, whereas those in the cola group had pitted enamels with destruction of the interstitial enamel column. Compared with cola group, fluorescent penetration increased in pomegranate juice (P < 0.01). The pH of cola (2.32 ± 0.09) was lower than that of pomegranate juice (3.16 ± 0.16). Furthermore, the calcium content in pomegranate juice was significantly higher than that in cola (P < 0.01). Alternatively, the concentration of phosphorous in cola was significantly higher than that in pomegranate juice (P < 0.01). CONCLUSION: These findings indicate that pomegranate juice can cause enamel demineralization with an erosive potential comparable to that of cola.


Asunto(s)
Granada (Fruta) , Erosión de los Dientes , Humanos , Calcio , Concentración de Iones de Hidrógeno , Erosión de los Dientes/inducido químicamente , Dureza , Cola , Esmalte Dental
5.
Signal Transduct Target Ther ; 9(1): 56, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462629

RESUMEN

Adding PD-1 blockade in the neoadjuvant regimens for locally advanced rectal cancer (LARC) patients with microsatellite stable (MSS) / mismatch repair-proficient (pMMR) tumors is an attractive, but debatable strategy. This phase 2, multicenter, prospective, single-arm study enrolled patients from 6 centers from June 2021 to November 2022. Locally advanced rectal cancer (LARC, cT3-4aN0M0 and cT1-4aN1-2M0) patients aged ≥18 years with the distance from distal border of tumor to anal verge ≤10 cm (identified by Magnetic Resonance Imaging) were qualified for inclusion. The patients received long-course radiotherapy (50 Gy/25 fractions, 2 Gy/fraction, 5 days/week) and three 21-day cycles capecitabine (850-1000 mg/m2, bid, po, day1-14) and three 21-day cycles tislelizumab (200 mg, iv.gtt, day8) as neoadjuvant. Total mesorectal excision (TME) was 6-12 weeks after the end of radiotherapy to achieve radical resection. A total of 50 patients were enrolled in this study. The pathological complete response rate was 40.0% [20/50, 95% confidence interval (CI): 27.61-53.82%], while 15 (30.0%, 95% CI: 19.1-43.75%), 9 (18.0%, 95% CI: 9.77-30.8%), 2 (4.0%, 95% CI: 1.10-13.46%) patients respectively achieved grade 1, 2, and 3 tumor regression. Treatment-related adverse events (TRAEs) occurred in 28 (56.0%) LARC patients, including 26(52.0%) with grade I-II and 2 (4.0%) with grade III (1 with grade 3 immune-related colitis and 1 with grade 3 rash). PD-1 blockade plus long-course chemoradiotherapy (CRT) showed promising therapeutic effects according to pathological complete response rate and is well-tolerated in LARC patients. A larger randomized controlled study is desired to further validate the above findings.


Asunto(s)
Néctar de las Plantas , Neoplasias del Recto , Humanos , Adolescente , Adulto , Receptor de Muerte Celular Programada 1 , Estudios Prospectivos , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/patología , Quimioradioterapia/métodos
6.
Int Immunopharmacol ; 130: 111738, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38428149

RESUMEN

BACKGROUND: Neuroinflammation, a critical component of the secondary injury cascade post-spinal cord injury, involves the activation of pro-inflammatory cells and release of inflammatory mediators. Resolution of neuroinflammation is closely linked to cellular autophagy. This study investigates the potential of Fisetin, a natural anti-inflammatory compound, to ameliorate neuroinflammation and confer spinal cord injury protection through the regulation of autophagy in pro-inflammatory cells. METHODS: Utilizing a rat T10 spinal cord injury model with distinct treatment groups (Sham, Fisetin-treated, and Fisetin combined with autophagy inhibitor), alongside in vitro models involving lipopolysaccharide (LPS)-stimulated microglial cell activation and co-culture with neurons, we employed techniques such as transcriptomic sequencing, histological assessments (immunofluorescence staining, etc.), molecular analyses (PCR, WB, ELISA, etc.), and behavioral evaluations to discern differences in neuroinflammation, autophagy, neuronal apoptosis, and neurological function recovery. RESULTS: Fisetin significantly augmented autophagic activity in injured spinal cord tissue, crucially contributing to neurological function recovery in spinal cord-injured rats. Fisetin's autophagy-dependent effects were associated with a reduction in neuronal apoptosis at the injury site. The treatment reduced the population of CD68+ and iNOS+ cells, coupled with decreased pro-inflammatory cytokines IL-6 and TNF-α levels, through autophagy-dependent pathways. Fisetin pre-treatment attenuated LPS-induced pro-inflammatory polarization of microglial cells, with this protective effect partially blocked by autophagy inhibition. Fisetin-induced autophagy in the injured spinal cord and pro-inflammatory microglial cells was associated with significant activation of AMPK and inhibition of mTOR. CONCLUSION: Fisetin orchestrates enhanced autophagy in pro-inflammatory microglial cells through the AMPK-mTOR signaling pathway, thereby mitigating neuroinflammation and reducing the apoptotic effects of neuroinflammation on neurons. This mechanistic insight significantly contributes to the protection and recovery of neurological function following spinal cord injury, underscoring the vital nature of Fisetin as a potential therapeutic agent.


Asunto(s)
Flavonoles , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Ratas , Animales , Lipopolisacáridos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Serina-Treonina Quinasas TOR/metabolismo , Médula Espinal/patología , Microglía , Autofagia
7.
Odontology ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528238

RESUMEN

Chronic apical periodontitis (CAP) is characterized by inflammation and destruction of the apical periodontium that is of pulpal origin, appearing as an apical radiolucent area, and does not produce clinical symptoms. Little is known about whether the PD-1/PD-L1 ratio is associated with the balance between RANKL and OPG in CAP. The relationship between PD-1/PD-L1 and RANKL/OPG in CAP is investigated in this study. A CAP rat model was established using Sprague-Dawley rats. The pulp chambers were exposed to the oral cavity to allow bacterial contamination. The apical tissues of the bilateral mandibular first molars were analyzed for histological morphology using hematoxylin and eosin (H&E) staining. Immunohistochemistry and qRT-PCR were used to determine the expression of PD-1, PD-L1, OPG, and RANKL mRNA and proteins in periapical tissues and mandibular samples, respectively. The radiological images indicated a poorly defined low-density shadow and alveolar bone resorption after periodontitis induction. Histological analysis revealed an infiltration of inflammatory cells and alveolar bone resorption in the periapical tissues. Mandibular mRNA and periapical protein expression of PD-1, PD-L1, and RANKL was upregulated 7-28 days after periodontitis induction, while the expression of OPG was downregulated. No significant relationship was observed between PD-1/PD-L1 and RANKL/OPG at either mRNA or protein levels in CAP. There is an increased expression of PD-1, PD-L1, and RANKL and a decreased expression of OPG, indicating progression of CAP.

8.
Shock ; 61(3): 454-464, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412105

RESUMEN

ABSTRACT: Immunosuppression, commonly accompanied by persistent inflammation, is a key feature in the later phase of sepsis. However, the pathophysiological mechanisms underlying this phenomenon remain unclear. Dendritic cells (DCs), specifically tolerogenic DCs (tolDCs), play a crucial role in this process by regulating immune responses through inducing T cell anergy and releasing anti-inflammatory cytokines. Nevertheless, the existing cell models are inadequate for investigating tolDCs during the immunosuppressive phase of sepsis. Therefore, this study aimed to develop a novel in vitro model to generate tolDCs under chronic inflammatory conditions. We have successfully generated tolDCs by exposing them to sublethal lipopolysaccharide (LPS) for 72 h while preserving cell viability. Considering that IL-10-induced tolDCs (IL-10-tolDCs) are well-established models, we compared the immunological tolerance between LPS-tolDCs and IL-10-tolDCs. Our findings indicated that both LPS-tolDCs and IL-10-tolDCs exhibited reduced expression of maturation markers, whereas their levels of inhibitory markers were elevated. Furthermore, the immunoregulatory activities of LPS-tolDCs and IL-10-tolDCs were found to be comparable. These dysfunctions include impaired antigen presenting capacity and suppression of T cell activation, proliferation, and differentiation. Notably, compared with IL-10-tolDCs, LPS-tolDCs showed a reduced response in maturation and cytokine production upon stimulation, indicating their potential as a better model for research. Overall, in comparison with IL-10-tolDCs, our data suggest that the immunological dysfunctions shown in LPS-tolDCs could more effectively elucidate the increased susceptibility to secondary infections during sepsis. Consequently, LPS-tolDCs have emerged as promising therapeutic targets for ameliorating the immunosuppressed state in septic patients.


Asunto(s)
Interleucina-10 , Sepsis , Humanos , Interleucina-10/metabolismo , Células Dendríticas/metabolismo , Lipopolisacáridos/farmacología , Tolerancia Inmunológica , Sepsis/metabolismo , Inflamación/metabolismo
9.
Environ Res ; 249: 118431, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346481

RESUMEN

Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.


Asunto(s)
Plantas , Humanos , Plantas/metabolismo , Ésteres/metabolismo , Organofosfatos/metabolismo , Contaminantes Ambientales/metabolismo
10.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38300175

RESUMEN

Methamphetamine is a highly addictive psychostimulant drug that is abused globally and is a serious threat to health worldwide. Unfortunately, the specific mechanism underlying addiction remains unclear. Thus, this study aimed to investigate the characteristics of functional connectivity in the brain network and the factors influencing methamphetamine use disorder in patients using magnetic resonance imaging. We included 96 abstinent male participants with methamphetamine use disorder and 46 age- and sex-matched healthy controls for magnetic resonance imaging. Compared with healthy controls, participants with methamphetamine use disorder had greater impulsivity, fewer small-world attributes of the resting-state network, more nodal topological attributes in the cerebellum, greater functional connectivity strength within the cerebellum and between the cerebellum and brain, and decreased frontoparietal functional connectivity strength. In addition, after controlling for covariates, the partial correlation analysis showed that small-world properties were significantly associated with methamphetamine use frequency, psychological craving, and impulsivity. Furthermore, we revealed that the small-word attribute significantly mediated the effect of methamphetamine use frequency on motor impulsivity in the methamphetamine use disorder group. These findings may further improve our understanding of the neural mechanism of impulse control dysfunction underlying methamphetamine addiction and assist in exploring the neuropathological mechanism underlying methamphetamine use disorder-related dysfunction and rehabilitation.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Estimulantes del Sistema Nervioso Central , Metanfetamina , Humanos , Masculino , Metanfetamina/efectos adversos , Encéfalo/diagnóstico por imagen , Trastornos Relacionados con Anfetaminas/diagnóstico por imagen , Trastornos Relacionados con Anfetaminas/psicología , Mapeo Encefálico , Imagen por Resonancia Magnética
11.
Int J Cancer ; 155(1): 159-171, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385833

RESUMEN

Colorectal cancer has the highest mortality rate of all digestive system diseases. Considering the debate about cytokines and biases that exist in traditional observational study designs, we performed a two-sample Mendelian randomization (MR) analysis to explore the association of circulating cytokines with CRC risk. In this study, we used cytokine genetic variants from a recently published genome-wide association study (GWAS) including 14,824 European-ancestry participants. Summary-level data for colorectal cancer were obtained from genome-wide association analyses of the FinnGen consortium. In addition, we conducted independent supplementary analyses using genetic variation data of colorectal cancer and cytokines from a large public GWAS in 2021. Among 91 circulating factors, we only found IL-12B to be significantly associated with CRC risk (odds ratio [OR]: 1.19; 95% confidence interval [CI]: 1.00-1.42; p = .046). We used 2021 data for analysis and found that higher Interleukin-12p70 levels (IL-12p70) were revealed to have a significant positive association with CRC risk (OR: 1.27; 95% CI: 1.13-1.43; p < 1.22 × 10-3). Moreover, CRC was suggestively correlated with an elevated level of vascular endothelial growth factor (VEGF) (OR: 1.17; 95% CI: 1.02-1.35; p = .026), macrophage colony-stimulating factor (M-CSF) (OR: 0.85; 95% CI: 0.76-0.96; p = .005), IL-13 (OR: 1.15; 95% CI: 1.02-1.30; p = .028), IL-10 (OR: 1.23; 95% CI: 1.01-1.49; p = .037), and IL-7 (OR: 1.19; 95% CI: 1.02-1.39; p = .024). Our MR studies support that one cytokine IL-12 is significantly associated with CRC risk and that five cytokines VEGF, M-CSF, IL-13, IL-10, and IL-7 are associated with CRC risk.


Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/sangre , Citocinas/sangre , Citocinas/genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Riesgo , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/sangre , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/genética , Masculino , Femenino , Interleucina-10/sangre , Interleucina-10/genética
12.
Bioresour Technol ; 395: 130400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286169

RESUMEN

The rational use of bamboo to make dissolving pulp can offer up new opportunities for cellulose production, alleviating wood scarcity. Bamboo contains a high content of non-fiber cells, which presents technical challenges in dissolving pulp production by the conventional process. In this study, a process concept of separating hemicelluloses is presented by fiber fractionation and purification for cleaner production of bamboo dissolving pulp: bamboo kraft pulp was fractionated into long-fiber and short-fiber fractions. The cellulose-rich long-fiber fraction was converted to dissolving pulp by further purification treatment with acid hydrolysis and cold caustic extraction. The hemicellulose-rich short-fiber fraction was used for papermaking. The laboratory results were confirmed by those from mill trials. The combined pulp yield (dissolving pulp + paper-grade pulp) reached 49 %, which was significantly higher than that of the conventional pre-hydrolysis kraft pulping process. Furthermore, the quality of dissolving pulp was higher due to inherently higher cellulose content of long-fiber fraction.


Asunto(s)
Celulosa , Fraccionamiento Químico , Madera , Hidrólisis
13.
Mater Horiz ; 11(3): 646-660, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38063132

RESUMEN

Manipulation of the surface properties of the triboelectric layer has been proven to be one of the key parameters to achieve high-performance and stable triboelectric nanogenerators (TENG). Herein, a pragmatic surface engineering strategy that can substantially boost the performance and stability of flexible TENG is elaborated by incorporating the zwitterionic molecule dimethylethylammoniumpropane sulfonate (NDSB) as the surface modification layer. Given that zwitterionic molecules tend to form aggregated structures, realizing ordered arrangement on the substrate surface remains challenging to date. To address this issue, in this work, a combination of multiple surface treatments and molecular manipulation strategy is proposed. Our results prove that NDSB is effective in modifying the surface properties of the dielectric layer and electrode layer, leading to a remarkable power density and specific power of 2.86 W m-2 and 20.73 mW g-1 for flexible TENG, respectively. In addition, due to the strong interaction between the NDSB/dielectric and NDSB/electrode, a water-resistant long-term stable flexible TENG is realized. More encouragingly, our strategy is compatible with a cost-effective dip-coating technique, and an unprecedented demonstration of batch fabrication of TENG using NDSB to functionalize the surface of the dielectric layer and electrode layer synchronously can be realized, which is advantageous for rapid and up-scalable manufacturing of TENG. We also prove that the TENG based on zwitterionic materials reveals exceptional antibacterial properties against Escherichia coli. This study represents an important step towards the development of long-term stable flexible TENG that possesses a high output performance and excellent antibacterial activity based on a facile and economical strategy, enabling TENG technology to show bright prospects in a wide variety of application domains.

14.
Environ Pollut ; 341: 122933, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977360

RESUMEN

Owing to their dominant wastewater origin, bioavailability, and toxicity, the occurrence and behavior of organophosphate esters (OPEs) in aquatic systems have attracted considerable attention over the past two decades. Aquatic plants can accumulate and metabolize OPEs in water, thereby playing an important role in their behavior and fate in waterbodies. However, their uptake, translocation and transformation mechanisms in plants remain incompletely characterized. We investigated the accumulation and transformation of OPEs in water hyacinth (Eichhornia crassipes) through a series of hydroponic experiments using three representative OPEs, tris(2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPP). These OPEs can not only be adsorbed onto and enter plant roots via passive diffusion pathways, which are facilitated by anion channels and/or aquaporins, but also can return to the solution when concentration gradients exist. After entry, hydrophilic TCEP showed a dominant distribution in the cell sap, strong acropetal transportability, and rapid translocation rate, whereas hydrophobic TPP was mostly retained in the root cell wall and therefore demonstrated weak acropetal transportability; TBEP with moderate hydrophilicity remained in the middle. All these OPEs can be transformed into diesters, which presented higher proportions in the cell sap and therefore have stronger acropetal transferability than their parent OPEs. TCEP exhibits the lowest biodegradability, followed by TPP and TBEP. These OPEs exerted apparent effects on plant growth, photosynthesis, and the diversity and composition of the rhizosphere microbial community.


Asunto(s)
Eichhornia , Retardadores de Llama , Hidroponía , Ésteres/metabolismo , Organofosfatos/metabolismo
15.
Microb Biotechnol ; 16(11): 2114-2130, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37792264

RESUMEN

The severity of heat stroke (HS) is associated with intestinal injury, which is generally considered an essential issue for HS. Heat acclimation (HA) is considered the best strategy to protect against HS. In addition, HA has a protective effect on intestinal injuries caused by HS. Considering the essential role of gut microbes in intestinal structure and function, we decided to investigate the potential protective mechanism of HA in reducing intestinal injury caused by HS. HA model was established by male C57BL/6J mice (5-6 weeks old, 17-19 g) were exposed at (34 ± 0.7)°C for 4 weeks to establish an animal HA model. The protective effect of HA on intestinal barrier injury in HS was investigated by 16S rRNA gene sequencing and nontargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. According to the experimental results, HA can change the composition of the gut microbiota, which increases the proportion of lactobacilli, faecal bacteria, and urinobacteria but decreases the proportion of deoxycholic acid. Moreover, HA can reduce liver and kidney injury and systemic inflammation caused by HS and reduce intestinal injury by enhancing the integrity of the intestinal barrier. In addition, HA regulates inflammation by inhibiting NF-κB signalling and increasing tight junction protein expression in HS mice. HA induces changes in the gut microbiota, which may enhance tight junction protein expression, thereby reducing intestinal inflammation, promoting bile acid metabolism, and ultimately maintaining the integrity of the intestinal barrier. In conclusion, HA induced changes in the gut microbiota. Among the gut microbiota, lactobacilli may play a key role in the potential protective mechanism of HA.


Asunto(s)
Microbioma Gastrointestinal , Golpe de Calor , Ratones , Masculino , Animales , ARN Ribosómico 16S/genética , Calor , Ratones Endogámicos C57BL , Inflamación , Proteínas de Uniones Estrechas , Aclimatación
16.
Environ Pollut ; 336: 122492, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659627

RESUMEN

In the past decade, organophosphate esters (OPEs) undergo rapid increase in production and use. Meanwhile, owing to their additive property, OPEs exhibit liability to escape from related products and therefore ubiquity in various environments. Moreover, numerous researches verify their bioavailability and negative effects on biota and human, hence their occurrence and associated risks have caught much concern, particularly those in aquatic systems. So far, however, OPEs in water are generally investigated as a whole, their phase distribution and behavior in waterbodies are incompletely characterized. We examined 25 OPEs in water (including dissolved and particulate phases), sediment, and sediment core samples from the Lian River, which flows through the Guiyu e-waste recycling zone and Shantou specific economic zone in South China. Compared to most global waterbodies, the Lian River showed high or ultrahigh OPE levels in both water and sediments, particularly in the reaches surrounded by e-waste recycling and plastic-related industries, which were the top two greatest OPE sources. Non-industrial and agriculture-related anthropogenic activities also contributed OPEs. Sediment core data suggested that OPEs have been present in waters in Guiyu since the 1960s and showed a temporal trend consistent with the local waste-recycling business. The phase distribution of OPEs in the Lian River was significantly correlated with their hydrophobicity and solubility. Owing to their wide range of physicochemical properties, OPE congeners showed significant percentage differences in the Lian River water and sediments. Generally, OPEs in water reflect their dynamic real-time inputs, while those in sediment signify their accumulative deposition, which is another cause of their phase distribution disparities in the Lian River. The physicochemical parameters of OPEs first imposed negative and then positive influences on their dissolved phase-sediment distribution, indicating the involvement of both the adsorption of dissolved OPEs and the deposition of particle-bound OPEs.

17.
PLoS One ; 18(3): e0282779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36888638

RESUMEN

The aim of this study was to investigate the influence of road factors on the safety speed threshold of a lorry turning right around a corner at a the bottom of a long downhill T-junction. Trucksim simulation software was chosen to construct a model for investigating the turning instability mechanism. A three-axle truck was chosen as the simulation vehicle and road adhesion coefficients of 0.2-0.75, road super-elevations of -2-8%, turning radii of 20-100 m, and vehicle overcharge of 0-100% selected for tuning. Simulation experiments were carried out for different bending conditions, investigating the effects of each influencing factor on the destabilization speed threshold using the control variable method. The vehicle's lateral load transfer rate and lateral acceleration were indicators for determining whether a truck was unstable. The results showed that: a) the turning radius had the most significant influence on the speed threshold for cornering instability; b) the road surface adhesion coefficient and vehicle overweight had secondary effects; and c) the road height had a general influence.

18.
Sci Total Environ ; 874: 162435, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36842584

RESUMEN

Mechanisms underlying the plant uptake, accumulation, and translocation of organophosphate esters (OPEs) and brominated flame retardants (BFRs) in field environments remain ambiguous. To better understand these processes, we selected a typically polluted river with steady flow and rampant water hyacinth (Eichhornia crassipes) and investigated 25 OPEs and 23 BFRs in 24 sets of matched water-plant samples. Both OPEs and BFRs showed high or ultra-high levels in field water hyacinths, statistically positive water-plant/root concentration correlations, and dominant distributions in the roots. Passive root uptake was the dominant route for OPEs and BFRs to enter the water hyacinth. Both OPEs and BFRs in water hyacinth exhibited acropetal translocation from the root and possible basipetal translocation from the leaf. The accumulation and translocation of OPEs in water hyacinth were significantly affected by their substituents and structures, including the chlorination degree, alkyl chain length, side chain, and methylation degree of aryl-substituted OPEs. The translocation of BFRs in water hyacinth also showed close association with their bromination degree, but their accumulation in roots showed anomaly, indicating possible transformations. Overall, the enrichment and behavior of OPEs and BFRs in water hyacinth seemed to be mainly controlled by physicochemical parameters. OPE/BFR concentrations in total suspended particulate (TSP), TSP-associated organic carbon content, TSP concentration, and plant biomass all showed significant effects on their root accumulation and translocations in water hyacinth. This study provides rare field evidences and novel insights into the basipetal translocation of OPEs and BFRs in plants.


Asunto(s)
Eichhornia , Retardadores de Llama , Retardadores de Llama/análisis , Ésteres , Polvo , Organofosfatos/análisis , Monitoreo del Ambiente , China
19.
Front Oncol ; 13: 1057947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816939

RESUMEN

Background: Neoadjuvant chemoradiotherapy is the standard treatment for locally advanced rectal cancer, with modest benefits on tumor regression and survival. Since chemoradiotherapy combined with immune checkpoint inhibitors has been reported to have synergic effects. This study aims to explore the safety and efficacy of long-course chemoradiotherapy combined with concurrent tislelizumab as a neoadjuvant treatment regimen for patients with locally advanced rectal cancer. Methods: This manuscript reported the interim result of a prospective, multicenter, single-arm, phase II trial. Patients with mid-to-low locally advanced rectal cancer with clinical stages of cT3-4a N0M0 or cT1-4a N1-2M0 were included. The patients received long-course radiotherapy (50 Gy/25 f, 2 Gy/f, 5 days/week) and three 21-day cycles of capecitabine (1000 mg/m2, bid, day1-14) plus concurrent three 21-day cycles of tislelizumab (200 mg, day8), followed by a radical surgery 6-8 weeks after radiotherapy. The primary endpoint was the pathological complete response rate. (Clinical trial number: NCT04911517). Results: A total of 26 patients completed the treatment protocol between April 2021 and June 2022. All patients completed chemoradiotherapy, 24 patients received three cycles of tislelizumab, and 2 patients received two cycles. The pathological complete remission (ypT0N0) was achieved in 50% (13/26) of the patients with all proficient mismatch repair tumors. The immune-related adverse event occurred in 19.2% (5/26) of patients. Patients with no CEA elevation or age less than 50 were more likely to benefit from this treatment regimen. Conclusion: Long-course chemoradiotherapy combined with concurrent tislelizumab in patients with locally advanced low rectal cancer had favorable safety and efficacy, and does not increase the complication rate of surgery. Further study is needed to confirm these results.

20.
Odontology ; 111(1): 154-164, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36057921

RESUMEN

This study was to investigate whether the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) and T-helper 17 (Th17)/regulatory T (Treg) balance are associated with chronic apical periodontitis (CAP) relived by 0.1% nano-silver. CAP rat models were established by opening the first molars of the right and left mandible and exposing the pulp cavity to the oral cavity. CAP model was verified by cone-beam computed tomography, X-ray digital radiovisiography, and hematoxylin-eosin (H and E) staining. The rats were randomly divided into the sham, Ca(OH)2, and 0.1% nano-silver groups (n = 12 in each group) 2 weeks after surgery. The pathological changes in the apical area were detected by H and E staining. PD-1, PD-L1, RORγT, IL-17, and Foxp3 in periapical tissues were detected by qRT-PCR and immunohistochemistry. Th17/Treg and PD-1/PD-L1 were analyzed by flow cytometry. After 7, 14, and 21 days of 0.1% nano-silver treatment, inflammatory cells in the apical region were slightly reduced and inflammatory infiltration was relieved compared with the sham group. RORγT, IL-17, PD-1, and PD-L1 decreased and Foxp3 increased after 7, 14, and 21 days of 0.1% nano-silver treatment compared with the sham group (p < 0.05); however, there were no significant differences with Ca(OH)2 group (p > 0.05). Flow cytometry revealed that 0.1% nano-silver solution decreased Th17/Treg and PD-1/PD-L1 ratio. 0.1% Nano-silver significantly reduced the inflammation of CAP in rats. PD-1/PD-L1 was included in Th17/Treg balance restored by 0.1% nano-silver.


Asunto(s)
Periodontitis Periapical , Periodontitis , Animales , Ratas , Antígeno B7-H1/metabolismo , Factores de Transcripción Forkhead/metabolismo , Interleucina-17/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA