RESUMEN
Iron oxides affect the stability of soil organic matter (SOM), which in turn affects greenhouse gas emissions in paddy soils. They also regulate the direction and magnitude of the rhizosphere priming effect (RPE) by restricting SOM accessibility and microbial activity. However, the controlling steps and key factors that regulate the RPE magnitude under anoxic conditions are unknown. In this study, we investigated the mechanisms through which Fe(III) reduction affects the RPE using humic acid as an electron shuttle in paddy soils and conducting continuous 13CO2 labeling of rice plants. The RPE, measured via CO2 emission, was approximately 25 % greater in soils with humic acid than in soils without. A rapid increase in the RPE of CH4 emissions after 41 days was attenuated in soils containing humic acid. Root growth and Fe(III) reduction stimulated the total primed CO2 emissions from the rhizosphere independent of the microbial biomass and enzyme activities. Humic acid accelerated Fe(III) reduction, leading to a decrease in Fe-bound organic carbon and an increase in RPE (CO2 emissions). The rhizosphere-primed CO2 emissions decreased with increasing amounts of reactive Fe(III) (oxyhydr)oxides, which protected the SOM from microbial and enzymatic attacks. Biochemical Fe(III) reduction and physical aggregate destruction controlled the abiotic transformation of inaccessible SOM into bioavailable organic carbon, thereby regulating the RPE. The results suggest that the reduction of reactive Fe(III) minerals is the rate-limiting step in the release of the physicochemically protected SOM, which in turn determines the magnitude of rhizosphere priming in paddy soils.
RESUMEN
Deutenzalutamide is a new molecular entity androgen receptor antagonist. The primary aim of this study was to develop a population pharmacokinetic model of deutenzalutamide and evaluate effects of intrinsic and extrinsic factors on pharmacokinetics. A nonlinear mixed-effects modeling approach was performed to develop the population pharmacokinetic of deutenzalutamide using data from 1 Phase I trial of deutenzalutamide. Goodness-of-fit plots, prediction-corrected visual predictive check, and bootstrap analysis were carried out to evaluate the final model. Simulation for the developed model was used to evaluate the covariate effects on the pharmacokinetics of deutenzalutamide. A 2-compartment model with first-order absorption and elimination from the central compartment was established for deutenzalutamide. The final covariate included body weight on peripheral compartment volume. This is the first research developing the population pharmacokinetic model of deutenzalutamide in patients with metastatic castration-resistant prostate cancer, and it is expected to support the future clinical administration of deutenzalutamide.
RESUMEN
Electrocatalytic carbon dioxide reduction into high-value chemicals is one of the important solutions to the greenhouse effect and energy crisis. However, the slow kinetic process of eight electrons requires the development of efficient catalysts to improve the yields. Single atom catalysts (SACs) with high activity and selectivity have become an emerging research frontier in the field of heterogeneous catalysis. Herein, a catalyst comprised of Cu single atoms loaded on carbon substrate (Cu-NC) is developed for highly selective electrocatalytic reduction of CO2 to methane (CH4). The optimal catalyst (Cu-NC-1-4) exhibits a faradaic efficiency (FE) of over 50 % for CH4 within a wide potential window from -1.3â V to -1.8â V (vs. RHE) and the highest FE of CH4 is up to 67.22 % at -1.6â V (vs. RHE). Meanwhile, the product selectivity of CH4 among all the carbon products reaches 93.00 %, and the activity decay can be negligible via the 70-hour-stability-test. The existence of atomic dispersed Cu-N3 sites was verified by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption near edge structure (XANES). Density functional theory (DFT) calculations show that the effective adsorption of the key intermediate *CO on Cu-N3 sites prompts the generation of CH4.
RESUMEN
Background: At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism. To uphold the required drug concentration, patients must undergo frequent chemotherapy sessions. Purpose: To address these challenges above, we need to develop a secure and effective drug delivery system (FA-PEG-PDA-DOX) for the fundus. Methods: We offered superior therapeutic efficacy with minimal or no side effects and successfully established orthotopic mouse models. We evaluated cellular uptake performance and targeting efficiency of FA-PEG-PDA-DOX nanosystem and assessed its synergistic antitumor effects in vitro and vivo. Biodistribution assessments were performed to determine the retention time and targeting efficiency of the NPs in vivo. Additionally, safety assessments were conducted. Results: Cell endocytosis rates of the FA-PEG-PDA-DOX+Laser group became 5.23 times that of the DOX group and 2.28 times that of FA-PEG-PDA-DOX group without irradiation. The fluorescence signal of FA-PEG-PDA-DOX persisted for more than 120 hours at the tumor site. The number of tumor cells (17.2%) in the proliferative cycle decreased by 61.6% in the photothermal-chemotherapy group, in contrast to that of the saline control group (78.8%). FA-PEG-PDA-DOX nanoparticles(NPs) exhibited favorable biosafety and high biocompatibility. Conclusion: The dual functional targeted nanosystem, with the effects of DOX and mild-temperature elevation by irradiation, resulted in precise chemo/photothermal therapy in nude mice model.
Asunto(s)
Doxorrubicina , Indoles , Terapia Fototérmica , Polímeros , Retinoblastoma , Animales , Retinoblastoma/terapia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Ratones , Terapia Fototérmica/métodos , Humanos , Indoles/química , Indoles/farmacocinética , Indoles/farmacología , Línea Celular Tumoral , Polímeros/química , Distribución Tisular , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Ratones Desnudos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias de la Retina/terapia , Neoplasias de la Retina/tratamiento farmacológico , Ratones Endogámicos BALB C , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administración & dosificación , Modelos Animales de Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacocinéticaRESUMEN
Electrochemical nitrate reduction method (NitRR) is a low-carbon, environmentally friendly, and efficient method for synthesizing ammonia, which has received widespread attention in recent years. Copper-based catalysts have a leading edge in nitrate reduction due to their good adsorption of *NO3. However, the formation of active hydrogen (*H) on Cu surfaces is difficult and insufficient, resulting in a large amount of the by-product NO2 -. In this work, Pd single atoms suspended on the interlayer unsaturated bonds of CuO atoms formed due to dislocations (Pd-CuO) were prepared by low temperature treatment, and the Pd single atoms located on the dislocations were subjected to shear stress and the dynamic effect of support formation to promote the conversion of nitrate into ammonia. The catalysis had an ammonia yield of 4.2â mol. gcat -1. h-1, and a Faraday efficiency of 90 % for ammonia production at -0.5â V vs. RHE. Electrochemical in situ characterization and theoretical calculations indicate that the dynamic effects of Pd single atoms and carriers under shear stress obviously promote the production of active hydrogen, reduce the reaction energy barrier of the decision-making step for nitrate conversion to ammonia, further promote ammonia generation.
RESUMEN
BACKGROUND: Multiple high doses of 131I therapy in patients with differentiated thyroid cancer (DTC) might disrupt the balance of gut microbiota and metabolites. This study aimed to investigate the alterations of intestinal bacteria and metabolism over two courses of 131I therapy, explore the interactions, and construct diagnostic models reflecting enteric microecology based on 131I therapy. METHODS: A total of 81 patients were recruited for the first 131I therapy (131I-1st), among whom 16 received a second course (131I-2nd) after half a year. Fecal samples were collected 1 day before (Pre-131I-1st/2nd) and 3 days after (Post-131I-1st/2nd) 131I therapy for microbiome (16S rRNA gene sequencing) and metabolomic (LC-MS/MS) analyses. RESULTS: A total of six microbial genera and 11 fecal metabolites enriched in three pathways were identified to show significant differences between Pre-131I-1st and other groups throughout the two courses of 131I treatment. In the Post-131I-1st group, the beneficial bacteria Bifidobacterium, Lachnoclostridium, uncultured_bacterium_f_Lachnospiraceae, and Lachnospiraceae_UCG004 were abundant and the radiation-sensitive pathways of linoleic acid (LA), arachidonic acid, and tryptophan metabolism were inhibited compared with the Pre-131I-1st group. Compared with the Pre-131I-1st group, the Pre-131I-2nd group exhibited a reduced diversity of flora and differentially expressed metabolites, with a low abundance of beneficial bacteria and dysregulated radiation-sensitive pathways. However, less significant differences in microbiota and metabolites were found between the Pre/Post-131I-2nd groups compared with those between the Pre/Post-131I-1st groups. A complex co-occurrence was observed between 6 genera and 11 metabolites, with Lachnoclostridium, Lachnospiraceae_UCG004, Escherichia-Shigella, and LA-related metabolites contributing the most. Furthermore, combined diagnostic models of charactered bacteria and metabolites answered well in the early, long-term, and dose-dependent responses for 131I therapy. CONCLUSIONS: Different stages of 131I therapy exert various effects on gut microecology, which play an essential role in regulating radiotoxicity and predicting the therapeutic response.
Asunto(s)
Heces , Microbioma Gastrointestinal , Radioisótopos de Yodo , Neoplasias de la Tiroides , Humanos , Microbioma Gastrointestinal/fisiología , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/microbiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Heces/microbiología , Anciano , ARN Ribosómico 16S/genética , Adulto JovenRESUMEN
Background: Hepatocellular carcinoma (HCC) is a highly aggressive cancer. This study aims to elucidate the role of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR) in HCC proliferation and metastasis, along with its molecular mechanism, and to identify miRNAs targeting GRHPR. Materials and Methods: Expression levels of GRHPR and miR-138-5p were assessed using real-time fluorescent quantitative polymerase chain reaction and Western blot techniques. Bioinformatic analysis was employed to identify miRNAs targeting GRHPR, and the results were confirmed via dual-luciferase reporter assays. HCC cell lines overexpressing GRHPR were established to investigate its roles in cell proliferation, migration, and invasion. The biological function of miR-138-5p targeting GRHPR in HCC cells was also evaluated. Furthermore, a xenograft mouse model was utilized to examine the in vivo functions of GRHPR. Results: GRHPR expression was downregulated in HCC, whereas miR-138-5p was upregulated. Overexpression of GRHPR suppressed HCC cell proliferation, migration, and invasion. Conversely, inhibition of GRHPR by miR-138-5p promoted HCC cell proliferation and invasive properties. MiR-138-5p was found to regulate Phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) phosphorylation levels by inhibiting GRHPR expression. Conclusion: This study highlights GRHPR's role as a tumor suppressor in HCC, with its function being regulated by miR-138-5p.
RESUMEN
BACKGROUND: Calcitonin (CT) is a sensitive serum marker of medullary thyroid carcinoma usually detected via immunoassays; however, its levels are easily disturbed by several endogenous factors. OBJECTIVE: The study aimed to discuss a case of suspected interference resulting in aberrant CT values and review previous reports of CT interference. METHODS: A female patient visited our clinic with a physical ultrasound examination showing a slightly enlarged thyroid gland with small nodules. She had elevated CT levels, inconsistent with the clinical presentation and other findings. We evaluated the results by retesting using the same platform, platform validation, multiplex dilution, Polyethylene Glycol (PEG) precipitation, heterophilic blocking tubes, and RET gene analysis. RESULTS: Retesting CT using the same platform confirmed the high value obtained. However, serial dilution of the sample produced nonlinear results, suggesting some interference. While PEG precipitation did not significantly reduce the CT level, incubating the sample in HBTs normalized the CT value, indicating interference from heterophilic antibodies. Gene sequencing revealed no RET mutations. CONCLUSION: In cases where elevated CT levels are inconsistent with clinical presentations and other findings, the laboratory technicians should communicate with clinicians, analyze the reasons for the inconsistent results, and use different methods to verify the results. Accurate testing provides realistic and reliable data for doctors and patients and helps to avoid unnecessary procedures.
RESUMEN
BACKGROUND: The survival advantage of neoadjuvant systemic therapy (NST) for breast cancer patients remains controversial, especially when considering the heterogeneous characteristics of individual patients. OBJECTIVE: To discern the variability in responses to breast cancer treatment at the individual level and propose personalized treatment recommendations utilizing deep learning (DL). METHODS: Six models were developed to offer individualized treatment suggestions. Outcomes for patients whose actual treatments aligned with model recommendations were compared to those whose did not. The influence of certain baseline features of patients on NST selection was visualized and quantified by multivariate logistic regression and Poisson regression analyses. RESULTS: Our study included 94,487 female breast cancer patients. The Balanced Individual Treatment Effect for Survival data (BITES) model outperformed other models in performance, showing a statistically significant protective effect with inverse probability treatment weighting (IPTW)-adjusted baseline features [IPTW-adjusted hazard ratio: 0.51, 95% confidence interval (CI), 0.41-0.64; IPTW-adjusted risk difference: 21.46, 95% CI 18.90-24.01; IPTW-adjusted difference in restricted mean survival time: 21.51, 95% CI 19.37-23.80]. Adherence to BITES recommendations is associated with reduced breast cancer mortality and fewer adverse effects. BITES suggests that patients with TNM stage IIB, IIIB, triple-negative subtype, a higher number of positive axillary lymph nodes, and larger tumors are most likely to benefit from NST. CONCLUSIONS: Our results demonstrated the potential of BITES to aid in clinical treatment decisions and offer quantitative treatment insights. In our further research, these models should be validated in clinical settings and additional patient features as well as outcome measures should be studied in depth.
Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Persona de Mediana Edad , Adulto , Anciano , Medicina de PrecisiónRESUMEN
The extraction, isolation, structural characterisation and biological activities of polysaccharides from Amorpha fruticosa flowers were investigated. First, the crude polysaccharide AFP was extracted, and two major purified polysaccharide fractions AFP-2 and AFP-3 were isolated. The molecular weight and monosaccharide compositions of AFP-2 and AFP-3 were determined. Then the antioxidant activities of AFP, AFP-2 and AFP-3 were assessed by DPPH radical, ß-Carotene bleaching and hydroxyl radical assays. All three tested polysaccharides showed good antioxidant activity while AFP was the strongest one. The study also showed that AFP, AFP-2 and AFP-3 have good tyrosinase inhibition, moisture absorption and retention activities. The results will provide a helpful reference for the application of polysaccharide from Amorpha fruticosa flowers as a natural cosmetic ingredient.
RESUMEN
BACKGROUND: HCC is a leading cause of cancer-related death. The role of reactive oxygen species (ROS) in HCC remains elusive. Since a primary ROS source is the mitochondrial electron transport chain complex Ι and the NADH:ubiquinone Oxidoreductase Subunit B3 (NDUFB3), a complex I subunit, is critical for complex I assembly and regulates the associated ROS production, we hypothesize that some HCCs progress by hijacking NDUFB3 to maintain ROS homeostasis. METHODS: NDUFB3 in human HCC lines was either knocked down or overexpressed. The cells were then analyzed in vitro for proliferation, migration, invasiveness, colony formation, complex I activity, ROS production, oxygen consumption, apoptosis, and cell cycle. In addition, the in vivo growth of the cells was evaluated in nude mice. Moreover, the role of ROS in the NDUFB3-mediated changes in the HCC lines was determined using cellular and mitochondrion-targeted ROS scavengers. RESULTS: HCC tissues showed reduced NDUFB3 protein expression compared to adjacent healthy tissues. In addition, NDUFB3 knockdown promoted, while its overexpression suppressed, HCC cells' growth, migration, and invasiveness. Moreover, NDUFB3 knockdown significantly decreased, whereas its overexpression increased complex I activity. Further studies revealed that NDUFB3 overexpression elevated mitochondrial ROS production, causing cell apoptosis, as manifested by the enhanced expressions of proapoptotic molecules and the suppressed expression of the antiapoptotic molecule B cell lymphoma 2. Finally, our data demonstrated that the apoptosis was due to the activation of the c-Jun N-terminal kinase (JNK) signaling pathway and cell cycle arrest at G0/G1 phase. CONCLUSIONS: Because ROS plays essential roles in many biological processes, such as aging and cancers, our findings suggest that NDFUB3 can be targeted for treating HCC and other human diseases.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Ratones Desnudos , NAD , Especies Reactivas de Oxígeno , Ubiquinona , Homeostasis , OxidorreductasasRESUMEN
CONTEXT: Current metabolomics studies in diabetes have focused on the fasting state, while only a few have addressed the satiated state. OBJECTIVE: We combined the oral glucose tolerance test (OGTT) and metabolomics to examine metabolite-level changes in populations with different glucose tolerance statuses and to evaluate the potential risk of these changes for diabetes. METHODS: We grouped participants into those with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and newly diagnosed type 2 diabetes (NDM). During the OGTT, serum was collected at 0, 30, 60, 120, and 180â minutes. We evaluated the changes in metabolite levels during the OGTT and compared metabolic profiles among the 3 groups. The relationship between metabolite levels during the OGTT and risk of diabetes and prediabetes was analyzed using a generalized estimating equation (GEE). The regression results were adjusted for sex, body mass index, fasting insulin levels, heart rate, smoking status, and blood pressure. RESULTS: Glucose intake altered metabolic profile and induced an increase in glycolytic intermediates and a decrease in amino acids, glycerol, ketone bodies, and triglycerides. Isoleucine levels differed between the NGT and NDM groups and between the NGT and IGR groups. Changes in sarcosine levels during the OGTT in the diabetes groups were opposite to those in glycine levels. GEE analysis revealed that during OGTT, isoleucine, sarcosine, and acetic acid levels were associated with NDM risks, and isoleucine and acetate levels with IGR risks. CONCLUSION: Metabolic profiles differ after glucose induction in individuals with different glucose tolerance statuses. Changes in metabolite levels during OGTT are potential risk factors for diabetes development.
Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Isoleucina , Sarcosina , Humanos , Masculino , Femenino , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Persona de Mediana Edad , Isoleucina/sangre , Factores de Riesgo , Sarcosina/análogos & derivados , Sarcosina/sangre , Glucemia/análisis , Glucemia/metabolismo , Adulto , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/epidemiología , Intolerancia a la Glucosa/metabolismo , Estado Prediabético/sangre , Estado Prediabético/epidemiología , Estado Prediabético/metabolismo , Metabolómica , Anciano , Biomarcadores/sangreRESUMEN
Glutamate dehydrogenase 1 (GLUD1) is an important enzyme in glutamine metabolism. Previously, we found GLUD1 was down-regulated in tumor tissues of hepatocellular carcinoma (HCC) patients by proteomics study. To explore its role in the progression of HCC, the expressional level of GLUD1 was firstly examined and presented as that both the protein and mRNA levels were down-regulated in tumor tissues compared to the normal liver tissues. GLUD1 overexpression significantly inhibited HCC cells proliferation, migration, invasion and tumor growth both in vitro and in vivo, while GLUD1 knocking-down promoted HCC progression. Metabolomics study of GLUD1 overexpressing and control HCC cells showed that 129 differentially expressed metabolites were identified, which mainly included amino acids, bases, and phospholipids. Moreover, metabolites in mitochondrial oxidative phosphorylation system (OXPHOS) were differentially expressed in GLUD1 overexpressing cells. Mechanistic studies showed that GLUD1 overexpression enhanced mitochondrial respiration activity and reactive oxygen species (ROS) production. Excessive ROS lead to mitochondrial apoptosis that was characterized by increased expression levels of p53, Cytochrome C, Bax, Caspase 3 and decreased expression level of Bcl-2. Furthermore, we found that the p38/JNK MAPK pathway was activated in GLUD1 overexpressing cells. N-acetylcysteine (NAC) treatment eliminated cellular ROS and blocked p38/JNK MAPK pathway activation, as well as cell apoptosis induced by GLUD1 overexpression. Taken together, our findings suggest that GLUD1 inhibits HCC progression through regulating cellular metabolism and oxidative stress state, and provide that ROS generation and p38/JNK MAPK pathway activation as promising methods for HCC treatment.
RESUMEN
The bioactivities of crude polysaccharides from leaves (L-Ps) and flowers (F-Ps) of Schnabelia terniflora (Maxim.) P. D. Cantino were studied, and the characteristics of purified fractions were analysed by HPLC, HP-GPC and NMR. L-Ps exhibited strong DPPH radical scavenging activity (IC50 value of 251.53 ± 4.62 µg/mL) and tyrosinase inhibition (IC50 value of 163.52 ± 2.59 µg/mL). However, the maximum moisture absorption (74.67 ± 1.53%) and retention (68.00 ± 3.61%) abilities were observed in F-Ps. Two main fractions separated by DEAE-Sepharose fast flow column from L-Ps were eluted with 0.1 and 0.3 M NaCl, while one main fraction from F-Ps was eluted with 0.1 M NaCl. Purified fractions were obviously different in monosaccharide composition, molecular weight and 1H NMR and 13C NMR spectra. Therefore, the current manuscript can provide an important evidence for the potential development of L-Ps and F-Ps as promising ingredients in cosmetics industry.
RESUMEN
With the development of high-speed rail, the spatiotemporal distance among regions has been shortened. However, the research on the spatiotemporal distribution and correlation of resident population and industrial structure caused by the opening of high-speed railway is relatively few. This study is aimed to explore the impact of high-speed rail on resident population and industrial structure, as well as the spatiotemporal agglomeration and evolution trend. The spatial-temporal distribution of the resident population, industrial structure, and the influence of high-speed rail was studied using panel data from 31 Chinese provinces from 2006 to 2018 using spatial autocorrelation analysis, standard deviation ellipse method, and DID model. The experimental results indicate that: (1) The resident population shows a significant positive spatial autocorrelation, while the industrial structure is vice versa. (2) The resident population and industrial structure are primarily centralized in the eastern and central areas, showing a "northeast-southwest" spatial distribution pattern. (3) High-speed rail and the resident population are negatively correlated, and there is heterogeneity. Although there is an association between high-speed rail and industrial structure that is positive, there is also a clear regional variability. This study contributes to providing the corresponding theoretical support and basis for the high-speed rail line planning in different regions and the relevant departments to formulate effective economic policies.
RESUMEN
More than 90% of the global NH3 synthesis is dominated by the Haber-Bosch process, which consumes 2% of the worldwide energy and generates 1.44% of the global carbon emission. The electrochemical N2 reduction reaction (NRR) is regarded as an attractive alternative route to produce NH3 under mild reaction conditions, but the electrocatalysts suffer from the difficulty of N≡N cleavage. In this work, we report a leaf-like MOF-derived Ni/Zn bimetallic co-doped nitrogen-coordinated porous carbon (Ni/Zn-NPC) as a cost-effective NH3 synthesis electrocatalyst. The resultant electrocatalyst achieved a high NH3 production rate of 22.68 µg h-1 mgcat-1 at -1.0 V vs a reversible hydrogen electrode (RHE) in a 0.1 M Na2SO4 electrolyte. The Ni/Zn-NPC material can be called a microwave regenerable catalyst because microwave treatment has proven to be a crucial part of the multi-field coupling to detoxify and make the catalyst reactive, further improving its stability. Density functional theory (DFT) was chosen to explore the mechanism of Ni/Zn-NPC for NRR, providing a profound prediction of the structure of the active site and related reaction pathways and revealing that trace Ni doping optimizes the local coordination environment and N2 adsorption of Zn atoms.
RESUMEN
Epinodosin has shown antibacterial and antitumor biological characteristics in the documents. We found that Epinodosin has an effective inhibitory effect on esophageal squamous cell carcinoma (ESCC). However, the potential roles and mechanisms of Epinodosin in ESCC remain unclear. We performed many experiments to clarify the effect and mechanism of Epinodosin on ESCC. In this study, cell viability, invasion, migration, and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,-diphenytetrazoliumromide (MTT), Transwell, and flow cytometry. The differentially expressed miRNAs were screened through RNA transcriptome sequencing. The expression levels of miRNA-143-3p and some proteins were measured by real-time polymerase chain reaction (PCR) and Western blot. The anticancer effects of Epinodosin in vivo were determined by a nude mouse model. Epinodosin suppressed cell proliferation/invasion/migration and induced ESCC cell apoptosis. Epinodosin remarkably affected the protein expression of mitogen-activated protein kinase (MAPK) signaling pathway. The animal experiments demonstrated that Epinodosin could attenuate the growth of ESCC tumors in nude mice. The expression of p53, Bim, and Bax was upregulated, while that of Bcl-2 was downregulated in tumor tissues. In conclusion, Epinodosin suppresses cell viability/invasion/migration, while induces ESCC cell apoptosis by mediating miRNA-143-3p and Bcl-2, and can markedly attenuate the growth of ESCC tumors in nude mice.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ratones Desnudos , Neoplasias Esofágicas/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
Electrochemical nitrogen reduction reaction (NRR) is a promising method for ammonia synthesis under ambient conditions. However, the NRR performance is limited to an extremely strong N≡N bond in N2 and the competing hydrogen evolution reaction. Introducing oxygen vacancies (OVs) has been considered as a forceful means to accelerate the sluggish NRR reaction kinetics. Herein, we reported the design of Fe-doped NiMoO4 catalysts for NRR. Fe doping can increase the amount of OVs in the catalyst and contribute to lattice strain enhancement, thereby leading to the improvement of the electron transport rate and catalytic active for NRR. In 0.1 M Na2SO4 solution, the 5% Fe-NiMoO4 catalyst achieves a NH3 yield rate of 15.36 µg h-1 mgcat.-1 and a Faradaic efficiency of 26.85% under -0.5 V versus RHE. Furthermore, the 5% Fe-NiMoO4 catalyst exhibits excellent stability (up to 13 h) during the reaction.
RESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS: We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS: We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS: Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.