Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931000

RESUMEN

Microbial fuel cells (MFCs) have the potential to directly convert the chemical energy in organic matter into electrical energy, making them a promising technology for achieving sustainable energy production alongside wastewater treatment. However, the low extracellular electron transfer (EET) rates and limited bacteria loading capacity of MFCs anode materials present challenges in achieving high power output. In this study, three-dimensionally heteroatom-doped carbonized grape (CG) monoliths with a macroporous structure were successfully fabricated using a facile and low-cost route and employed as independent anodes in MFCs for treating brewery wastewater. The CG obtained at 900 °C (CG-900) exhibited excellent biocompatibility. When integrated into MFCs, these units initiated electricity generation a mere 1.8 days after inoculation and swiftly reached a peak output voltage of 658 mV, demonstrating an exceptional areal power density of 3.71 W m-2. The porous structure of the CG-900 anode facilitated efficient ion transport and microbial community succession, ensuring sustained operational excellence. Remarkably, even when nutrition was interrupted for 30 days, the voltage swiftly returned to its original level. Moreover, the CG-900 anode exhibited a superior capacity for accommodating electricigens, boasting a notably higher abundance of Geobacter spp. (87.1%) compared to carbon cloth (CC, 63.0%). Most notably, when treating brewery wastewater, the CG-900 anode achieved a maximum power density of 3.52 W m-2, accompanied by remarkable treatment efficiency, with a COD removal rate of 85.5%. This study provides a facile and low-cost synthesis technique for fabricating high-performance MFC anodes for use in microbial energy harvesting.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Vitis , Aguas Residuales , Fuentes de Energía Bioeléctrica/microbiología , Aguas Residuales/química , Aguas Residuales/microbiología , Vitis/química , Purificación del Agua/métodos , Porosidad , Electricidad
2.
J Inorg Biochem ; 247: 112330, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37478782

RESUMEN

Metal complexes, particularly copper(II) complexes, are often used as anticancer drugs due to their ability to generate reactive oxygen species (ROS) in cells. Four copper(II) complexes have been designed based on ligands for triplet pyridine derivatives (complexes 1-4), and their structures have been determined using X-ray single crystal analysis. The interactions of these complexes with calf thymus DNA (CT-DNA) have been investigated using various techniques, including UV-vis absorption, viscosity measurements, and circular dichroism spectroscopy. The results indicate that complexes 1-4 strongly interact with DNA through partial intercalations. Further investigation using agarose gel electrophoresis shows that all four complexes can cleave pBR322 DNA in the presence of ascorbic acid as a reducing agent, and the DNA cleavage mechanism is through the generation of singlet oxygen (1O2). In vitro anticancer activities of these complexes have been evaluated using A549, MDA-MB-231, HeLa, and HepG2 cells. The calculated IC50 values indicate significant efficacy against cancer cells. Additionally, AO/EB staining assays reveal that these complexes induce cell apoptosis in HeLa cell line.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Células HeLa , Cobre/química , Ligandos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antineoplásicos/farmacología , Antineoplásicos/química , ADN/química , División del ADN , Cristalografía por Rayos X
3.
Huan Jing Ke Xue ; 40(1): 430-436, 2019 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-30628302

RESUMEN

In the natural environment, arsenic (As) is mainly adsorbed on iron oxide minerals. The release of adsorbed arsenic from iron oxide minerals to the water is the main source of arsenic pollution. Microbes play a crucial role for this process. The purpose of this study was to investigate the effect of the sulfate-reducing bacteria Desulfovibrio vulgaris DP4 on the transformation and mobilization of As. The experimental results show that the released As concentration of the two systems is 0 µmol·L-1 at 0 h. Compared with the control, DP4 promotes the desorption of As(Ⅴ) before the 84 h incubation process. The released As concentration reaches the maximum value of 12.6 µmol·L-1 at 13 h, accounting for~79% of the initial total adsorbed As (16 µmol·L-1). The maximum released As concentration is~8.4 times higher than that of the control (1.5 µmol·L-1). After 84 hours, the concentration of the released As in the DP4 system is lower than the abiotic control, which suggests that the released As is readsorbed on the solid surface. During the incubation process, the As mobility is significantly correlated with Eh. The XRD results show that the crystallinity of the solid samples in the DP4 system decreases by~50%. In general, a lower crystallinity of the adsorbent indicates a higher adsorption capacity. This may be one important reason for the As readsorption after 84 h. In addition, the SEM shows that goethite is agglomerated by DP4 and the EDS results indicate that goethite is partially transformed to an Fe-S mineral. Based on XANES, arsenic-sulfur minerals were not detected in the solid phase, which further confirms the SEM-EDS results, that is, that Fe-S minerals formed in the solid phase, rather than As2S3 (AsS). The released As was readsorbed on the secondary iron mineral, resulting in a lower dissolved As concentration in the DP4 system than in the abiotic control. Furthermore, 19% As(Ⅲ) was detected in the solid phase while dissolved As(Ⅲ) was not determined during the incubation process. The results suggest that sulfate-reducing bacteria may directly reduce adsorbed As(Ⅴ) to As(Ⅲ).


Asunto(s)
Arsénico/metabolismo , Desulfovibrio/metabolismo , Bacterias Reductoras del Azufre/metabolismo , Hierro , Oxidación-Reducción , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA