Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(35): 23487-23494, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39221626

RESUMEN

In this study, we developed a flexible cathode for fabricating high-performance ternary organic solar cells (OSCs). With solvent engineering and acid treatment, the conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrode was significantly enhanced with the sheet resistance reduced from 1081 to 83 Ω sq-1. After being coated with polyethylenimine, work function of the PEDOT:PSS electrode was tuned from -5.07 to -4.12 eV, which is beneficial for electron collection in OSCs. With this technique, the OSCs (on glass) showed an average power conversion efficiency (PCE) of 16.3%, which is comparable to that of conventional inverted OSCs with commonly used indium-tin oxide and sol-gel-processed zinc oxide. However, the processing temperature of the inverted OSCs was dramatically lowered from 200 to 120 °C. The flexible OSCs (on polyethylene naphthalate/PEDOT:PSS/PEIE) exhibited a high PCE of 14.1%. After being bended for 300 cycles, the PCE was only degraded by 8.5%, indicating the excellent bendability of the flexible OSCs with the organic cathode.

2.
Opt Lett ; 49(15): 4158-4161, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090883

RESUMEN

A fiber SPR sensor can achieve rapid and portable detection of trivalent arsenic ions (As3+) in drinking water or food, but their sensitivity and detection limit need to be further improved and developed toward specific detection. This article proposed the implementation of the SPR sensor using a biased core fiber spiral coarse cone structure. The fine core of the biased core fiber was used to reduce the mode of transmitted light. By controlling the pitch of the spiral core to control the SPR incidence angle, a significant increase in the sensitivity of the fiber SPR sensor was achieved. Meanwhile, the harmless glutathione (GSH) was modified on the surface of the sensing gold film to achieve the specific detection of As3+. The experimental results indicate that the spiral coarse cone fiber SPR sensor proposed in this article has a detection sensitivity of 32.48 nm/ppb for As3+, with a detection limit as low as 0.011 ppb, meeting the detection requirements of the World Health Organization for As3+ in water, which provides a new feasible solution for fast, portable, and highly sensitive detection of metal ions in water and food.

3.
Opt Lett ; 49(16): 4581-4584, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146108

RESUMEN

This Letter investigates mode splitting via whispering gallery modes (WGMs) in asymmetrical photonic molecules (PMs) composed of size-mismatched dual microspheres fabricated from fused silica. The characteristics of asymmetrical PMs were analyzed both numerically and experimentally, focusing specifically on the separation and intensity differences of splitting peaks. The splitting spectra exhibited a redshift, and the separation of two splitting peaks reached a maximum in symmetrical PMs, with a minimal difference in intensity also observed. It was noted that the splitting peaks shifted in opposite directions for the same PMs when coupling points with the tapered fibers were varied. This phenomenon can be applied to select similarly sized microparticles and to recognize PMs in optical devices.

4.
Heliyon ; 10(14): e34492, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148990

RESUMEN

Given the significant decline in vaccine efficacy against Omicron, the development of novel vaccines with specific or broad-spectrum effectiveness is paramount. In this study, we formulated four monovalent vaccines based on recombinant spike trimer proteins, along with three bivalent vaccines, and five monovalent vaccines based on recombinant spike proteins. We evaluated the efficacy of different vaccination regimens in eliciting neutralizing antibodies in mice through pseudovirus neutralization assays. Following two doses of primary immunization with D614G, mice received subsequent immunizations with Omicron (BA.1, BA.2, BA.4/5) boosters individually, which led to the generation of broader and more potent cross-neutralizing activity compared to D614G boosters. Notably, the BA.4/5 booster exhibited superior efficacy. Following two doses of primary immunization with Omicron (BA.1, BA.2, BA.4/5), mice were subsequently immunized with one dose of D614G booster which resulted in broader neutralizing activity compared to one dose of Omicron (BA.1, BA.2, or BA.4/5). In unvaccinated mice, full-course immunization with different bivalent vaccines induced broad neutralizing activity against Omicron and pre-Omicron variants, with D614G&BA.4/5 demonstrating superior efficacy. However, compared to other variants, the neutralizing activity against XBB.1.5/1.9.1 is notably reduced. This observation emphasizes the necessity of timely updates to the vaccine antigen composition. Based on these findings and existing studies, we propose a vaccination strategy aimed at preserving the epitope repertoire to its maximum potential: (1) Individuals previously vaccinated or infected with pre-Omicron variants should inoculate a monovalent vaccine containing Omicron components; (2) Individuals who have only been vaccinated or infected with Omicron should be inoculated a monovalent vaccine containing pre-Omicron variants components; (3) Individuals without SARS-CoV-2 infection and vaccination should inoculate a bivalent vaccine comprising both pre-Omicron and Omicron components for primary immunization. Additionally, through cross-inoculation of SARS-CoV-2 D614G spike trimer protein and SARS-CoV-1 spike protein in mice, we preliminarily demonstrated the possibility of cross-reaction between different coronavirus vaccines to produce resistance to the pan-coronavirus.

5.
Cell Rep Med ; 5(8): 101666, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39094578

RESUMEN

Epithelial ovarian cancer (EOC) is the deadliest women's cancer and has a poor prognosis. Early detection is the key for improving survival (a 5-year survival rate in stage I/II is over 70% compared to that of 25% in stage III/IV) and can be achieved through methylation markers from circulating cell-free DNA (cfDNA) using a liquid biopsy. In this study, we first identify top 500 EOC markers differentiating EOC from healthy female controls from 3.3 million methylome-wide CpG sites and validated them in 1,800 independent cfDNA samples. We then utilize a pretrained AI transformer system called MethylBERT to develop an EOC diagnostic model which achieves 80% sensitivity and 95% specificity in early-stage EOC diagnosis. We next develop a simple digital droplet PCR (ddPCR) assay which archives good performance, facilitating early EOC detection.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Metilación de ADN , Detección Precoz del Cáncer , Neoplasias Ováricas , Humanos , Femenino , Metilación de ADN/genética , Biomarcadores de Tumor/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/sangre , Detección Precoz del Cáncer/métodos , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/patología , Inteligencia Artificial , Islas de CpG/genética , Persona de Mediana Edad , Biopsia Líquida/métodos
6.
Opt Express ; 32(9): 15882-15892, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859228

RESUMEN

To achieve a fiber strain sensor with a large detection range and high sensitivity, this paper proposes a wave structured fiber SPR strain sensor. When subjected to axial strain, the wave structured fiber is stretched axially, increasing the stretchability of the sensor and achieving a large detection range strain sensing. Meanwhile, axial strain reduces the longitudinal amplitude of the fiber wave structure, effectively changing the total reflection angle of the transmitted beam at the peak and valley (SPR incidence angle) to achieve high sensitivity SPR strain sensing. The experiment indicates that the strain detection range of the sensor can reach 0-1800µÎµ, with a maximum strain sensitivity of 36.25pm/µÎµ. The wave structured fiber SPR strain sensor designed in this article provides a new approach to improve the range and sensitivity of strain detection.

7.
Opt Express ; 32(8): 13783-13796, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859339

RESUMEN

The conical fiber SPR sensor is easy to manufacture and has been used in biochemical detection research, but it has the problem of structural fragility. This article proposes a spiral cone fiber SPR sensor, which introduces a spiral structure on the 76µm fiber coarse cone, achieving good coupling of the core mode into the cladding mode, and improving the physical strength and practicality of the cone-shaped fiber SPR sensor. By modifying the target protein on the surface of the sensor gold film, specific detection of ginsenoside Rg1, an active ingredient of traditional Chinese medicine ginseng, was achieved. The detection sensitivity was 0.138 nm/(µm/ml) and the detection limit was 0.22µm/ml. The proposed spiral cone fiber SPR sensor provides a new scheme for the specific detection of active ingredients in traditional Chinese medicine, which is structurally stable and physically strong.


Asunto(s)
Ginsenósidos , Resonancia por Plasmón de Superficie , Ginsenósidos/análisis , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Tecnología de Fibra Óptica/instrumentación , Límite de Detección
9.
Biomed Opt Express ; 15(6): 3859-3868, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867779

RESUMEN

The fiber surface plasmon resonance (SPR) sensor used for the detection of active ingredients in traditional Chinese medicine has the problems of low sensitivity and difficult specific recognition. This paper proposed a wave type fiber SPR sensor, which reduced the mode of transmitted light through a periodic wave structure and caused concentrated and total reflection of the transmitted beam at the interface between the bent peak cladding and the air. A 50 nm gold film was coated on the surface of the cladding in the wave structure area to form the SPR sensing area. By controlling the width and height of the wave structure to control the total reflection angle of the transmitted light, i.e., the SPR incidence angle, the sensitivity of the fiber SPR sensor was effectively improved to 4972 nm/RIU. Furthermore, HSP90AA protein was modified on the gold film of the sensor to achieve specific detection of hyperoside. The longest single detection time was only 3 minutes, and the detection sensitivity was 0.53 nm/(µg/ml), with a detection limit as low as 0.68µg/ml, which is comparable to liquid chromatography. The proposed wave type fiber SPR sensor is fast in production and has high structural mechanical strength, providing a new approach for the rapid, highly sensitive, and specific detection of active ingredients in traditional Chinese medicine.

10.
Int J Biol Macromol ; 264(Pt 2): 130573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447846

RESUMEN

Re-establishment of the extracellular matrix (ECM) in wound tissue is critical for activating endogenous tissue repair. In this study, we designed an ECM-like scaffold material using plant polysaccharides and assessed its efficacy through in vitro and in vivo experiments. The scaffold accelerates wound healing by regulating inflammatory responses and accelerating tissue regeneration. Briefly, we isolated two polysaccharides of varying molecular weights from peony stamens. One of the polysaccharides exhibits potent immunomodulatory and tissue regeneration activities. We further prepared electrospinning materials containing this polysaccharide. In vitro investigations have demonstrated the polysaccharide's ability to modulate immune responses by targeting TLR receptors. In vivo experiments utilizing a scaffold composed of this polysaccharide showed accelerated healing of full-thickness skin wounds in mice, promoting rapid tissue regeneration. In conclusion, our study shows that this scaffold can mobilize the endogenous regenerative capacity of tissues to accelerate repair by mimicking the characteristics of ECM. The overall study has implications for the design of new, effective, and safer tissue regeneration strategies.


Asunto(s)
Paeonia , Piel , Ratones , Animales , Cicatrización de Heridas/fisiología , Matriz Extracelular , Andamios del Tejido , Polisacáridos/farmacología
11.
Nanoscale ; 16(15): 7670-7677, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38529826

RESUMEN

Organic-inorganic halide-based wide-bandgap perovskite solar cells (PSCs) have been researched extensively due to their potential application in tandem solar cells. In this study, we directly added an anti-solvent (diethyl ether, DE) into the perovskite precursor for controlling the crystallization process of perovskite layers with a wide bandgap (1.74 eV). The introduction of DE could facilitate the nucleation and accelerate the perovskite growth during the spin-coating process. Due to the improved crystallization of the perovskite, the wide-bandgap PSCs showed a high power-conversion efficiency (PCE) of 19.7% on average with improved current density and fill factor. In contrast, the control devices without using DE exhibited a low average PCE of 17.6%. Moreover, the ambient stability of the related PSCs was simultaneously enhanced with a remarkably decreased PCE degradation, from 31.3% to 16.8%, after 16 days of storage and measurement. The DE-assisted well-crystallized PSCs showed a highest PCE of 20.1%, with a stable current output and negligible hysteresis. Our research provides a simple and effective way for controlling the crystallization of wide-bandgap perovskite layers and hence improving the performance of wide-bandgap PSCs.

12.
Opt Express ; 31(25): 42637-42650, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087633

RESUMEN

In the context of optical fiber humidity sensing, the long-term stability of sensors in high humidity and dew environments such as bathrooms or marine climates remains a challenge, especially since many humidity sensitive materials are water soluble. In this study, we use methyldiethanolamine, pentaerythritol triacrylate and Eosin Y to form a liquid-solid structure humidity sensitive component, the outermost layer is coated with PDMS passivating layer to ensure the stability and durability of the humidity sensor under the conditions of dew and high humidity. The liquid microcavity of the sensor consists of methyldiethanolamine-pentaerythritol triacrylate composite solution, and the sensitivity is several times higher than that of the liquid-free cavity sensor. The sensitivity of the sensor to temperature is verified (0.43 nm/°C and 0.30 nm/°C, respectively) and temperature crosstalk is compensated using a matrix. The compact structure allows for ultra-fast response (602 ms) and recovery time (349 ms). Our work provides a promising platform for efficient and practical humidity and other gas monitoring systems.

13.
Sci Rep ; 13(1): 23081, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155220

RESUMEN

Aiming at the problem of easy misdetection and omission of small targets of long-distance vehicles in detecting vehicles in traffic scenes, an improved YOLOX_S detection model is proposed. Firstly, the redundant part of the original YOLOX_S network structure is clipped using the model compression strategy, which improves the model inference speed while maintaining the detection accuracy; secondly, the Resunit_CA structure is constructed by incorporating the coordinate attention module in the residual structure, which reduces the loss of feature information and improves the attention to the small target features; thirdly, in order to obtain richer small target features, the PAFPN structure tail to add an adaptive feature fusion module, which improves the model detection accuracy; finally, the loss function is optimized in the decoupled head structure, and the Focal Loss loss function is used to alleviate the problem of uneven distribution of positive and negative samples. The experimental results show that compared with the original YOLOX_S model, the improved model proposed in this paper achieves an average detection accuracy of 77.19% on this experimental dataset. However, the detection speed decreases to 29.73 fps, which is still a large room for improvement in detection in real-time. According to the visualization experimental results, it can be seen that the improved model effectively alleviates the problems of small-target missed detection and multi-target occlusion.

14.
Heliyon ; 9(11): e21049, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37964833

RESUMEN

An embedded core fiber sensor based on surface plasmon resonance (SPR) principle is developed. In the structure of optical fiber, the middle of the optical fiber cladding is hollowed out. The hollowed-out part is then filled with a temperature-sensitive layer. For the temperature sensitive layer, polydimethylsiloxane(PDMS) is chosen. A metal layer is placed outside the cladding of the optical fiber to detect changes in the external environment and stimulate the SPR effect.The gold metal(Au) layer is also placed between the cladding and the PDMS to stimulate the SPR effect.The refractive index of seawater varies with salinity and temperature through COMSOL Multiphysics finite element simulation. We can measure the two parameters of salinity and temperature at the same time based on the SPR principle. The sensitivity of salinity and temperature calculated by this sensor is 0.193 nm/%, 0.397 nm/°C. Fiber optic sensors use the SPR principle to detect dynamic, real-time, continuous processes. The measurement range is very wide, and the brightness is also very high.Compared with single-channel measurement of single parameter, this sensor can greatly improve the efficiency of two-parameter measurement. The sensor has the advantages of simple structure, low production cost and high sensitivity, which can realize the simultaneous measurement of two parameters and avoid the crosstalk between parameters. It has great research significance.

15.
Opt Express ; 31(23): 38179-38190, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017930

RESUMEN

The current temperature-compensated fiber-optic surface plasmon resonance (SPR) biosensors are mainly open-ended outside the sensing structure, and there is a lack of temperature compensation schemes in fiber-optic microfluidic chips. In this paper, we proposed a temperature-compensated optical fiber SPR microfluidic sensor based on micro-nano 3D printing. Through the optical fiber micro-machining technology, the two sensing areas were designed on both sides of the same sensing fiber. The wavelength division multiplexing technology was used to collect the sensing light signals of the two sensing areas at the same time. The specific measurement of berberine and the detection of ambient temperature in the optical fiber SPR biological microfluidic channel were realized, and the temperature compensation matrix relationship was constructed, and then the temperature compensation was realized when measuring berberine biomolecules. Experiments have shown that the temperature sensitivity of the optical fiber SPR microfluidic sensor was 2.18 nm/°C, the sensitivity of the detection of berberine was 0.2646 nm/(µg/ml), the detection limit (LOD) was 0.38 µg/ml, and in a mixed solution showed an excellent specific detection impact.

16.
Opt Lett ; 48(20): 5245-5248, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831838

RESUMEN

In this Letter, we present a high-strain resolution fiber laser-based sensor (FLS) by a novel optical phase-locked loop (OPLL) interrogation technique based on a root mean square detector (RMSD). The sensor consists of a distributed feedback (DFB) fiber laser as a master laser for strain sensing and a fiber Fabry-Perot interferometer (FFPI) as a reference. The laser carrier locks to the reference by the PDH technique, and the single sideband laser working as a slave laser locks to the DFB sensing element using the OPLL technique, respectively. A strain resolution of 8.19 pε/√Hz at 1 Hz and 35.5 pε in 10 s is achieved in the demonstrational experiments. Significantly, the noise behaves a 1∕f distribution below 0.2 Hz due to the very low pump power for the DFB sensor and an active thermostat testing environment. The proposed OPLL interrogation brings new thinking for the demodulation of FLS. This strain sensor based on FLS has a great performance in strain measurement and can be a powerful tool for geophysical research.

17.
Opt Express ; 31(20): 31768-31779, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858994

RESUMEN

This paper introduces a surface plasmon resonance (SPR) sensor using tapered silica fiber and photopolymer coating for enhanced refractive index (RI) detection. Tapering the silica fiber to a diameter of 10 µm ensures the evanescent wave leaks into a 1.8-µm thick photopolymer film, which increases the average waveguide RI and broadens the RI detection range accordingly. A 50-nm thick single-side gold film is coated on the photopolymer film, exciting SPR and causing less light transmission loss than a double-side gold film. The method avoids the complex microfabrication processes of conventional polymer optical fiber SPR sensors, while the waveguide RI can be controlled by altering the curing time of the photopolymer during fabrication. The sensor has an overall sensitivity of 3686.25 nm/RIU, enabling RI detection of 1.333 - 1.493. Moreover, the sensor has an ultrahigh sensitivity of 6422.9 nm/RIU in the RI range of 1.423 - 1.493. The temperature response is about 1.43 nm/°C at 20 - 50 °C, which has little impact on RI detection. Finally, we demonstrate that the sensor can grade the severity of hepatic steatosis by measuring the RIs of cytoplasm/triglyceride emulsions with superior sensing performance.

18.
ACS Sens ; 8(11): 4171-4178, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37861795

RESUMEN

Respiration is essential for supporting human body functions. However, a biocompatible fiber respiration sensor has rarely been discussed. In this study, we propose a wearable fiber surface plasmon resonance (SPR) respiration sensor using a LiBr-doped silk fibroin (SF) film. The SPR sensor monitors respiration by responding to airway humidity variation during inhalation and exhalation. We fabricated the SPR respiration sensor by depositing the core of a plastic-clad optical fiber with a gold film and an SF-LiBr composite film. The SF-LiBr composite film can absorb water through the interaction between water molecules and hydrogen bonds linking fibroin chains. Thus, humidity variation can change the SF-LiBr composite film's refractive index (RI), altering the phase-matching condition of the surface plasmon polaritons and shifting the SPR spectral dip. In experiments, we test the effect of the LiBr doping ratio on humidity response and confirm that the SF-22.1 wt % LiBr sensor has balanced performances. The SF-22.1 wt % LiBr sensor has a broad sensing range of 35-99% relative humidity (RH), a reasonable overall sensitivity of -6.5 nm/% RH, a fast response time of 135 ms, a quick recovery time of 150 ms, good reversibility, and good repeatability, which is capable of tracking different respiration states and patterns. Finally, we encapsulate this sensor in a conventional nasal oxygen cannula for wearable respiration monitoring, proving that the sensor is suitable for high-sensitivity, real-time, and accurate respiration monitoring.


Asunto(s)
Fibroínas , Dispositivos Electrónicos Vestibles , Humanos , Resonancia por Plasmón de Superficie , Respiración , Agua
19.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896612

RESUMEN

An optical fiber sensor for the simultaneous measurement of microdisplacement and temperature based on balloon-shaped single-mode fibers cascaded with a fiber Bragg grating with two core-offset joints is proposed. The interference between the core mode and cladding mode is caused by the stimulation of the cladding mode by the core-offset joints' structure. The cladding of the core has a distinct refractive index, which causes optical path differences and interference. The balloon-shaped structure realizes mode selection by bending. As the displacement increases, the radius of the balloon-shaped interferometer changes, resulting in a change in the interference fringes of the interferometer, while the Bragg wavelength of the fiber grating remains unchanged. Temperature changes will cause the interference fringes of the interferometer and the Bragg wavelength of the fiber grating to shift. The proposed optical fiber sensor allows for the simultaneous measurement of microdisplacement and temperature. The results of the experiment indicate that the sensitivity of the interferometer to microdisplacement is 0.306 nm/µm in the sensing range of 0 to 200 µm and that the temperature sensitivity is 0.165 nm/°C, respectively. The proposed curvature sensor has the advantages of a compact structure, extensive spectrum of dynamic measurement, high sensitivity, and simple preparation, and has a wide range of potential applications in the fields of structural safety monitoring, aviation industry, and resource exploration.

20.
Opt Lett ; 48(19): 5057-5060, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773384

RESUMEN

At present, fiber strain sensors are mainly of the grating type and interference type, while there is relatively little research on fiber surface plasmon resonance (SPR) strain sensors. In this Letter, we propose a highly sensitive fiber SPR strain sensor based on an n-type structure. The strain changes the shape of the fiber n-type structure, causing the transmission mode of light in the fiber to change, thereby changing the SPR incidence angle and causing the SPR resonance valley wavelength to shift, achieving highly sensitive SPR strain sensing. The test results indicate that the strain sensing sensitivity of the proposed sensor reaches 21.33 pm/µÎµ, and two n-type structures are connected in series to obtain a double n-type structure, further enhancing the strain sensing sensitivity to 33.44 pm/µÎµ. This fiber strain sensor has advantages of high sensitivity, low temperature cross talk, strong structural stability, and low production cost, and is expected to become a new solution for wearable intelligent monitoring equipment and strain sensors in the aerospace field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA