Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 136(2): 421-429, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174375

RESUMEN

The magnitude of muscle hypertrophy in response to resistance training (RT) is highly variable between individuals (response heterogeneity). Manipulations in RT variables may modulate RT-related response heterogeneity; yet, this remains to be determined. Using a within-subject unilateral design, we aimed to investigate the effects of RT volume manipulation on whole muscle hypertrophy [quadriceps muscle cross-sectional area (qCSA)] among nonresponders and responders to a low RT dose (single-set). We also investigated the effects of RT volume manipulation on muscle strength in these responsiveness groups. Eighty-five older individuals [41M/44F, age = 68 ± 4 yr; body mass index (BMI) = 26.4 ± 3.7 kg/m2] had one leg randomly allocated to a single (1)-set and the contralateral leg allocated to four sets of unilateral knee-extension RT at 8-15 repetition maximum (RM) for 10-wk 2 days/wk. Pre- and postintervention, participants underwent magnetic resonance imaging (MRI) and unilateral knee-extension 1-RM strength testing. MRI typical error (2× TE = 3.27%) was used to classify individuals according to responsiveness patterns. n = 51 were classified as nonresponders (≤2× TE) and n = 34 as responders (>2× TE) based on pre- to postintervention change qCSA following the single-set RT protocol. Nonresponders to single-set training showed a dose response, with significant time × set interactions for qCSA and 1-RM strength, indicating greater gains in response to the higher volume prescription (time × set: P < 0.05 for both outcomes). Responders improved qCSA (time: P < 0.001), with a tendency toward higher benefit from the four sets RT protocol (time × set: P = 0.08); on the other hand, 1-RM increased similarly irrespectively of RT volume prescription (time × set: P > 0.05). Our findings support the use of higher RT volume to mitigate nonresponsiveness among older adults.NEW & NOTEWORTHY Using a within-subject unilateral design, we demonstrated that increasing resistance training (RT) volume may be a simple, effective strategy to improve muscle hypertrophy and strength gains among older adults who do not respond to low-volume RT. In addition, it could most likely be used to further improve hypertrophic outcomes in responders.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Anciano , Persona de Mediana Edad , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Músculo Cuádriceps/fisiología , Fuerza Muscular/fisiología , Hipertrofia
2.
Obesity (Silver Spring) ; 31(8): 2090-2102, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37475691

RESUMEN

OBJECTIVE: Fat content of adipocytes derived from infant umbilical cord mesenchymal stem cells (MSCs) predicts adiposity in children through 4 to 6 years of age. This study tested the hypothesis that MSCs from infants born to mothers with obesity (Ob-MSCs) exhibit adipocyte hypertrophy and perturbations in genes regulating adipogenesis compared with MSCs from infants of mothers with normal weight (NW-MSCs). METHODS: Adipogenesis was induced in MSCs embedded in three-dimensional hydrogel structures, and cell size and number were measured by three-dimensional imaging. Proliferation and protein markers of proliferation and adipogenesis in undifferentiated and adipocyte differentiating cells were measured. RNA sequencing was performed to determine pathways linked to adipogenesis phenotype. RESULTS: In undifferentiated MSCs, greater zinc finger protein (Zfp)423 protein content was observed in Ob- versus NW-MSCs. Adipocytes from Ob-MSCs were larger but fewer than adipocytes from NW-MSCs. RNA sequencing analysis showed that Zfp423 protein correlated with mRNA expression of genes enriched for cell cycle, MSC lineage specification, inflammation, and metabolism pathways. MSC proliferation was not different before differentiation but declined faster in Ob-MSCs upon adipogenic induction. CONCLUSIONS: Ob-MSCs have an intrinsic propensity for adipocyte hypertrophy and reduced hyperplasia during adipogenesis in vitro, perhaps linked to greater Zfp423 content and changes in cell cycle pathway gene expression.


Asunto(s)
Células Madre Mesenquimatosas , Madres , Femenino , Humanos , Obesidad/genética , Obesidad/metabolismo , Diferenciación Celular/genética , Adipogénesis/genética , Células Madre Mesenquimatosas/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/metabolismo , Hipertrofia/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1081056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077354

RESUMEN

Introduction: Resistance exercise can significantly increase serum steroid concentrations after an exercise bout. Steroid hormones are involved in the regulation of several important bodily functions (e.g., muscle growth) through both systemic delivery and local production. Thus, we aimed to determine whether resistance exercise-induced increases in serum steroid hormone concentrations are accompanied by enhanced skeletal muscle steroid concentrations, or whether muscle contractions per se induced by resistance exercise can increase intramuscular steroid concentrations. Methods: A counterbalanced, within-subject, crossover design was applied. Six resistance-trained men (26 ± 5 years; 79 ± 8 kg; 179 ± 10 cm) performed a single-arm lateral raise exercise (10 sets of 8 to 12 RM - 3 min rest between sets) targeting the deltoid muscle followed by either squat exercise (10 sets of 8 to 12 RM - 1 min rest) to induce a hormonal response (high hormone [HH] condition) or rest (low hormone [LH] condition). Blood samples were obtained pre-exercise and 15 min and 30 min post-exercise; muscle specimens were harvested pre-exercise and 45 min post-exercise. Immunoassays were used to measure serum and muscle steroids (total and free testosterone, dehydroepiandrosterone sulfate, dihydrotestosterone, and cortisol; free testosterone measured only in serum and dehydroepiandrosterone only in muscle) at these time points. Results: In the serum, only cortisol significantly increased after the HH protocol. There were no significant changes in muscle steroid concentrations after the protocols. Discussion: Our study provides evidence that serum steroid concentration increases (cortisol only) seem not to be aligned with muscle steroid concentrations. The lack of change in muscle steroid after protocols suggests that resistance-trained individuals were desensitized to the exercise stimuli. It is also possible that the single postexercise timepoint investigated in this study might be too early or too late to observe changes. Thus, additional timepoints should be examined to determine if RE can indeed change muscle steroid concentrations either by skeletal muscle uptake of these hormones or the intramuscular steroidogenesis process.


Asunto(s)
Hidrocortisona , Músculo Esquelético , Humanos , Masculino , Dihidrotestosterona , Músculo Esquelético/fisiología , Esteroides , Testosterona , Estudios Cruzados
4.
Physiol Genomics ; 55(4): 194-212, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939205

RESUMEN

Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of health, resilience, and performance adaptations. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to confer similar benefits. Mechanisms of action of these distinct stimuli are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD (n = 21, 12 M/9 F, 22 ± 3 yr) or HITT (n = 19, 11 M/8 F, 22 ± 2 yr). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|log2FC|>1, FDR ≤ 0.05) immediately (h0, EVs only), h3, and h24 postexercise within and between exercise protocols. In aaddition, all apparently responsive transcripts (FDR < 0.2) underwent singular value decomposition to summarize data structures into latent variables (LVs) to deconvolve molecular expression circuits and interregulatory relationships. LVs were compared across time and exercise protocol. TRAD, a longer but less intense stimulus, generally elicited a stronger transcriptional response than HITT, but considerable overlap and key differences existed. Findings reveal shared and unique molecular responses to the exercise stimuli and lay groundwork toward establishing relationships between protein-coding genes and lesser-understood transcripts that serve regulatory roles following exercise. Future work should advance the understanding of these circuits and whether they repeat in other populations or following other types of exercise/stress.NEW & NOTEWORTHY We examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation.


Asunto(s)
Entrenamiento de Fuerza , Transcriptoma , Humanos , Adulto Joven , Transcriptoma/genética , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica , Músculo Esquelético/metabolismo
5.
Med Sci Sports Exerc ; 55(2): 199-208, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136603

RESUMEN

INTRODUCTION: DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE: This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS: Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS: Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS: We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.


Asunto(s)
Ejercicio Físico , Factores Reguladores Miogénicos , Masculino , Humanos , Adulto Joven , Adulto , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , ARN Mensajero/metabolismo , Desmetilación
6.
Physiol Genomics ; 54(12): 501-513, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278270

RESUMEN

The ability of individuals with end-stage osteoarthritis (OA) to functionally recover from total joint arthroplasty is highly inconsistent. The molecular mechanisms driving this heterogeneity have yet to be elucidated. Furthermore, OA disproportionately impacts females, suggesting a need for identifying female-specific therapeutic targets. We profiled the skeletal muscle transcriptome in females with end-stage OA (n = 20) undergoing total knee or hip arthroplasty using RNA-Seq. Single-gene differential expression (DE) analyses tested for DE genes between skeletal muscle overlaying the surgical (SX) joint and muscle from the contralateral (CTRL) leg. Network analyses were performed using Pathway-Level Information ExtractoR (PLIER) to summarize genes into latent variables (LVs), i.e., gene circuits, and link them to biological pathways. LV differences in SX versus CTRL muscle and across sources of muscle tissue (vastus medialis, vastus lateralis, or tensor fascia latae) were determined with ANOVA. Linear models tested for associations between LVs and muscle phenotype on the SX side (inflammation, function, and integrity). DE analysis revealed 360 DE genes (|Log2 fold-difference| ≥ 1, FDR ≤ 0.05) between the SX and CTRL limbs, many associated with inflammation and lipid metabolism. PLIER analyses revealed circuits associated with protein degradation and fibro-adipogenic cell gene expression. Muscle inflammation and function were linked to an LV associated with endothelial cell gene expression highlighting a potential regulatory role of endothelial cells within skeletal muscle. These findings may provide insight into potential therapeutic targets to improve OA rehabilitation before and/or following total joint replacement.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Osteoartritis , Femenino , Humanos , Células Endoteliales , Articulación de la Rodilla , Osteoartritis/genética , Músculo Esquelético
7.
Compr Physiol ; 12(2): 3193-3279, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35578962

RESUMEN

For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico , Ejercicio Físico/fisiología , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-35270686

RESUMEN

Low-intensity aerobic training combined with blood flow restriction (LI + BFR) has resulted in increases in aerobic and neuromuscular capacities in untrained individuals. This strategy may help cyclists incapable of training with high intensity bouts or during a rehabilitation program. However, there is a lack of evidence about the use of LI + BFR in injured trained cyclists. Thus, we investigated the effects of LI + BFR on aerobic capacity, maximal isometric strength, cross-sectional area of vastus lateralis (CSAVL), time to exhaustion test (TTE), and 20 km cycling time-trial performance (TT20 km) in a male cyclist with knee osteoarthritis (OA). After a 4-week control period, a 9-week (2 days/week) intervention period started. Pre- and post-intervention TT20 km, peak oxygen consumption (VO2peak), power output of the 1st and 2nd ventilatory thresholds (1st WVT and 2nd WVT), maximum power output (Wmax), TTE, muscle strength and CSAVL of both legs were measured. Training intensity was fixed at 30% of Wmax while the duration was progressively increased from 12 min to 24 min. There was a reduction in time to complete TT20 km (-1%) with increases in TT20 km mean power output (3.9%), VO2peak (11.4%), 2nd WVT (8.3%), Wmax (3.8%), TTE (15.5%), right and left legs maximal strength (1.3% and 8.5%, respectively) and CSAVL (3.3% and 3.7%, respectively). There was no alteration in 1st WVT. Based on the results, we suggest that LI + BFR may be a promising training strategy to improve the performance of knee-injured cyclists with knee OA.


Asunto(s)
Ciclismo , Fuerza Muscular , Ciclismo/fisiología , Humanos , Pierna , Masculino , Fuerza Muscular/fisiología , Músculo Cuádriceps/fisiología , Flujo Sanguíneo Regional/fisiología
9.
Scand J Med Sci Sports ; 32(5): 821-832, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35092084

RESUMEN

We aimed to investigate whether muscle fiber cross-sectional area (fCSA) and associated molecular processes could be differently affected at the group and individual level by manipulating resistance training (RT) variables. Twenty resistance-trained subjects had each leg randomly allocated to either a standard RT (RT-CON: without specific variables manipulations) or a variable RT (RT-VAR: manipulation of load, volume, muscle action, and rest interval at each RT session). Muscle fCSA, satellite cell (SC) pool, myonuclei content, and gene expression were assessed before and after training (chronic effect). Gene expression was assessed 24 h after the last training session (acute effect). RT-CON and RT-VAR increased fCSA and myonuclei domain in type I and II fibers after training (p < 0.05). SC and myonuclei content did not change for both conditions (p > 0.05). Pax-7, MyoD, MMP-2 and COL3A1 (chronic) and MGF, Pax-7, and MMP-9 (acute) increased similar for RT-CON and RT-VAR (p < 0.05). The increase in acute MyoG expression was significantly higher for the RT-VAR than RT-CON (p < 0.05). We found significant correlation between RT-CON and RT-VAR for the fCSA changes (r = 0.89). fCSA changes were also correlated to satellite cells (r = 0.42) and myonuclei (r = 0.50) changes. Heatmap analyses showed coupled changes in fCSA, SC, and myonuclei responses at the individual level, regardless of the RT protocol. The high between and low within-subject variability regardless of RT protocol suggests that the intrinsic biological factors seem to be more important to explain the magnitude of fCSA gains in resistance-trained subjects.


Asunto(s)
Entrenamiento de Fuerza , Células Satélite del Músculo Esquelético , Biología , Humanos , Hipertrofia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos , Células Satélite del Músculo Esquelético/metabolismo
10.
J Strength Cond Res ; 36(4): 971-976, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32304519

RESUMEN

ABSTRACT: Gomes, RL, Lixandrão, ME, Ugrinowitsch, C, Moreira, A, Tricoli, V, and Roschel, H. Session rating of perceived exertion as an efficient tool for individualized resistance training progression. J Strength Cond Res 36(4): 971-976, 2022-The present study aimed to investigate the effects of an individualized resistance training (RT) progression model based on the session rating of perceived exertion (RPE) on gains in muscle mass and strength when compared with a conventional predetermined progression method (PP). Twenty previously trained young male subjects were randomly allocated to 1 of the 2 groups: RPE (n = 10) or PP (n = 10). Muscle cross-sectional area (CSA) and maximum dynamic strength were assessed at baseline and after 6 weeks. The RPE-based progression model resulted in a lower number of high-intensity sessions compared with the PP-based model. Despite this, both groups showed significant and similar increases in CSA (p < 0.0001; RPE = 6.55 ± 5.27% and PP = 9.65 ± 3.63%) and strength (p < 0.0001; RPE = 9.68 ± 4.57% and PP = 9.28 ± 4.01%) after the intervention period. No significant between-group difference was observed for total training volume (RPE = 45,366.00 ± 10,190.00 kg and PP = 47,779.00 ± 5,685.00 kg; p = 0.52). Our results showed that an RT progression model based on session-to-session physiological response assessments resulted in fewer high-intensity training sessions while allowing for similar gains in muscle strength and mass. Thus, trainees are encouraged to adopt session RPE as a potential tool to control workload progression throughout a training period and allowing the optimization of training stimulus on an individual basis.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Masculino , Fuerza Muscular/fisiología , Esfuerzo Físico/fisiología , Entrenamiento de Fuerza/métodos , Carga de Trabajo
11.
Nutrients ; 13(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34684538

RESUMEN

Higher daily protein intake, with an emphasis on leucine content, is thought to mitigate age-related anabolic resistance, potentially counteracting age-related morphological and functional declines. The present study investigated potential associations between total daily leucine intake and dependent variables, including quadriceps muscle cross-sectional area (CSA) and maximum dynamic muscle strength (1-RM) in a cohort of healthy free-living older individuals of both sexes (n = 67; 34/33 men/women). Participants performed three 24 h dietary recalls and underwent a magnetic resonance imaging exam followed by 1-RM tests. Our results demonstrate moderate associations between total daily leucine and both quadriceps CSA (r = 0.42; p = 0.004) and 1-RM (r = 0.45; p = 0.001). Furthermore, our exploratory biphasic linear regression analyses, adjusted for sex, age, and protein intake relative to body weight, revealed a plateau for daily leucine intake and muscle mass and muscle strength (~7.6-8.0 g·day-1) in older adults. In conclusion, we demonstrated that total daily leucine intake is associated with muscle mass and strength in healthy older individuals and this association remains after controlling for multiple factors, including overall protein intake. Furthermore, our breakpoint analysis revealed non-linearities and a potential threshold for habitual leucine intake, which may help guide future research on the effects of chronic leucine intake in age-related muscle loss.


Asunto(s)
Ingestión de Alimentos , Leucina/farmacología , Extremidad Inferior/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Anciano , Femenino , Humanos , Masculino , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Análisis de Regresión
12.
Med Sci Sports Exerc ; 53(8): 1708-1718, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33731656

RESUMEN

INTRODUCTION: Exercise-induced microRNA (miRNA) expression has been implicated in the regulation of skeletal muscle plasticity. However, the specificity and acute time course in miRNA expression after divergent exercise modes are unknown. In a randomized crossover design, we compared the acute expression profile of eight skeletal muscle miRNAs previously reported to be involved in skeletal muscle development, growth, and maintenance after a bout of either resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent resistance and high-intensity interval exercises (CE). METHODS: Nine untrained young men (23.9 ± 2.8 yr, 70.1 ± 14.9 kg, 177.2 ± 3.0 cm, 41.4 ± 5.2 mL·kg-1·min-1) underwent a counterbalanced crossover design in which they performed bouts of RE (2 × 10 repetitions maximum 45° leg press and leg extension exercises), HIEE (12 × 1-min sprints at V˙O2peak with 1-min rest intervals between sprints), and CE (RE followed by HIIE), separated by 1 wk. Vastus lateralis biopsies were harvested immediately before (Pre) and immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS: There were similar increases (main effect of time; P < 0.05) in miR-1-3p, miR-133a-3p, miR-133b, miR-181a-3p, and miR-486 expression at 8 h from Pre with all exercise modes. Besides a main effect of time, miR-23a-3p and miR-206 presented a main effect of condition with lower expression after HIIE compared with RE and CE. CONCLUSIONS: Select miRNAs (miR-1-3p, miR-133a-3p, miR-133b, miR-23a-3p, miR-181a-3p, miR-206, miR-486) do not exhibit an expression specificity in the acute recovery period after a single bout of RE, HIIE, or CE in skeletal muscle. Our data also indicate that RE has a higher effect on the expression of miR-23a-3p and miR-206 than HIIE. As upregulation of these miRNAs seems to be confined to the 8-h period after exercise, this may subsequently affect the expression patterns of target mRNAs forming the basis of exercise-induced adaptive responses.


Asunto(s)
Ejercicio Físico , Entrenamiento de Intervalos de Alta Intensidad , MicroARNs , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Adulto , Estudios Cruzados , Humanos , Masculino , MicroARNs/metabolismo , Regulación hacia Arriba , Adulto Joven
14.
Cancers (Basel) ; 12(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796499

RESUMEN

While performing aerobic exercise during chemotherapy has been proven feasible and safe, the efficacy of aerobic training on cardiorespiratory fitness (CRF) in women with breast cancer undergoing chemotherapy has not yet been systematically assessed. Therefore, the objective of this work was to determine (a) the efficacy of aerobic training to improve CRF; (b) the role of aerobic training intensity (moderate or vigorous) on CRF response; (c) the effect of the aerobic training mode (continuous or interval) on changes in CRF in women with breast cancer (BC) receiving chemotherapy. A systematic review and meta-analysis were conducted as per PRISMA guidelines, and randomized controlled trials comparing usual care (UC) and aerobic training in women with BC undergoing chemotherapy were eligible. The results suggest that increases in CRF are favored by (a) aerobic training when compared to usual care; (b) vigorous-intensity aerobic exercise (64-90% of maximal oxygen uptake, VO2max) when compared to moderate-intensity aerobic exercise (46-63% of VO2max); and (c) both continuous and interval aerobic training are effective at increasing the VO2max. Aerobic training improves CRF in women with BC undergoing chemotherapy. Notably, training intensity significantly impacts the VO2max response. Where appropriate, vigorous intensity aerobic training should be considered for women with BC receiving chemotherapy.

15.
Eur J Clin Nutr ; 74(7): 1047-1053, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265572

RESUMEN

BACKGROUND: Aging is accompanied by the inability to optimally respond to anabolic stimulus of nutrition, with consequent loss of muscle mass and functionality. It has been speculated that not only total protein intake, but also the per meal protein dose may have important implications to protein balance and, hence, muscle mass in middle-aged and older adults, but evidence is lacking in a more vulnerable population such as the frail elderly. The aim was to investigate possible associations between total protein intake and its per meal dose with multiple measures of muscle mass, strength, and functionality in a cohort of pre-frail and frail elderly individuals. METHODS: One-hundred-and-fifty-seven pre-frail and frail elderly individuals were assessed for total and per meal protein intake (food diaries), total and appendicular lean mass (DXA), vastus lateralis cross-sectional area [(CSA) B-mode ultrasound], and muscle function [leg-press and bench press 1-RM, timed-stands test, timed-up-and-go test, handgrip, and risk of falls (Biodex Balance System®)]. RESULTS: Protein intake and number of meals with either ≥20 g or ≥30 g of protein were significantly associated (after controlling for confounding factors) with greater total and appendicular lean mass and vastus lateralis CSA. CONCLUSIONS: We found that not only total protein intake but also the number of high-protein containing meals are associated with muscle mass in frail and pre-frail elderly.


Asunto(s)
Anciano Frágil , Fuerza de la Mano , Anciano , Humanos , Comidas , Persona de Mediana Edad , Fuerza Muscular , Músculo Esquelético , Músculos , Equilibrio Postural , Estudios de Tiempo y Movimiento
16.
J Appl Physiol (1985) ; 127(3): 806-815, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268828

RESUMEN

The manipulation of resistance training (RT) variables is used among athletes, recreational exercisers, and compromised populations (e.g., elderly) attempting to potentiate muscle hypertrophy. However, it is unknown whether an individual's inherent predisposition dictates the RT-induced muscle hypertrophic response. Resistance-trained young [26 (3) y] men (n = 20) performed 8 wk unilateral RT (2 times/wk), with 1 leg randomly assigned to a standard progressive RT [control (CON)] and the contralateral leg to a variable RT (VAR; modulating exercise load, volume, contraction type, and interset rest interval). The VAR leg completed all 4 RT variations every 2 wk. Bilateral vastus lateralis cross-sectional area (CSA) was measured, pre- and post-RT and acute integrated myofibrillar protein synthesis (MyoPS) rates were assessed at rest and over 48 h following the final RT session. Muscle CSA increase was similar between CON and VAR (P > 0.05), despite higher total training volume (TTV) in VAR (P < 0.05). The 0-48-h integrated MyoPS increase postexercise was slightly greater for VAR than CON (P < 0.05). All participants were considered "responders" to RT, although none benefited to a greater extent from a specific protocol. Between-subjects variability (MyoPS, 3.30%; CSA, 37.8%) was 40-fold greater than the intrasubject (between legs) variability (MyoPS, 0.08%; CSA, 0.9%). The higher TTV and greater MyoPS response in VAR did not translate to a greater muscle hypertrophic response. Manipulating common RT variables elicited similar muscle hypertrophy than a standard progressive RT program in trained young men. Intrinsic individual factors are key determinants of the MyoPS and change in muscle CSA compared with extrinsic manipulation of common RT variables.NEW & NOTEWORTHY Systematically manipulating resistance training (RT) variables during RT augments the stimulation of myofibrillar protein synthesis (MyoPS) and training volume but fails to potentiate muscle hypertrophy compared with a standard progressive RT. Any modest further MyoPS increase and higher training volumes do not reflect in a greater hypertrophic response. Between-subject variability was 40-fold greater than the variability promoted by extrinsic manipulation of RT variables, indicating that individual intrinsic factors are stronger determinants of the hypertrophic response.


Asunto(s)
Proteínas Musculares/biosíntesis , Músculo Cuádriceps/metabolismo , Entrenamiento de Fuerza/métodos , Adulto , Humanos , Hipertrofia , Masculino , Adulto Joven
18.
Amino Acids ; 51(1): 27-37, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29905904

RESUMEN

ß-Alanine (BA) supplementation may be ergogenic during high-intensity exercise, primarily due to the buffering of hydrogen cations, although the effects of beta-alanine supplementation on strength endurance are equivocal. The aim of the study was to determine the effects of 4 weeks of beta-alanine supplementation on skeletal muscle endurance using a battery of performance tests. This study employed a parallel group, repeated measures, randomised, double-blinded and placebo-controlled design. Twenty recreationally strength-trained healthy males completed tests of isotonic strength endurance (repeated bench and leg press), along with tests of isometric and isokinetic endurance conducted using an isokinetic dynamometer. Tests were performed before and after a 4 week intervention, comprising an intake of 6.4 g day-1 of BA (n = 9) or placebo (maltodextrin, n = 11). Time-to-exhaustion during the isometric endurance test improved by ~ 17% in the BA group (p < 0.01), while PL remained unchanged. No significant within-group differences (p > 0.1) were shown for any of the performance variables in the isokinetic test (peak torque, fatigue index, total work) nor for the total number of repetitions performed in the isotonic endurance tests (leg or bench press). Four weeks of BA supplementation (6.4 g day-1) improved isometric, but not isokinetic or isotonic endurance performance.


Asunto(s)
Suplementos Dietéticos , Contracción Isométrica/efectos de los fármacos , Contracción Isotónica/efectos de los fármacos , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resistencia Física/efectos de los fármacos , beta-Alanina/administración & dosificación , Adulto , Ejercicio Físico , Humanos , Masculino , Dinamómetro de Fuerza Muscular , Músculo Esquelético/metabolismo , Sustancias para Mejorar el Rendimiento/farmacología , Adulto Joven , beta-Alanina/farmacología
19.
J Sport Rehabil ; 28(7): 706-710, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30040033

RESUMEN

CONTEXT: Given the comparable muscle hypertrophy constantly observed between blood-flow restriction exercise (BFR-RE) and conventional resistance exercise, understanding their particular rating of perceived exertion (RPE) and pain may help to better prescribe exercise at a low-discomfort level, thus increasing its feasibility. DESIGN: Randomized crossover study. OBJECTIVE: To compare the RPE and pain response between conventional high- (HI-RE) and low-intensity resistance exercise (LI-RE) protocols to failure with a nonmuscular failure LI-RE associated with BFR-RE. PARTICIPANTS: A total of 12 men (age: 20 [3] y; body mass: 73.5 [9] kg; height: 174 [6] cm). INTERVENTIONS: Four sets of 45° leg-press exercises in 3 different conditions: (1) BFR-RE (15 repetitions; 30% 1-repetition maximum), (2) HI-RE (80% 1-repetition maximum to muscular failure), and (3) LI-RE (30% 1-repetition maximum to muscular failure). MAIN OUTCOME MEASURES: RPE and pain were assessed immediately before exercise session and after the end of each of the 4 sets. RESULTS: RPE and pain levels increased throughout the exercise sets for all RE protocols (all, Ps < .05). HI-RE and LI-RE protocols showed similar increase in RPE and pain levels during all exercise sets (P < .05); however, both protocols demonstrated higher RPE and pain response compared with BFR-RE after each of the 4 sets (all Ps < .05 between-group comparisons). CONCLUSIONS: Our results demonstrated that both HI-RE and LI-RE to muscular failure resulted in similar and significant increases in RPE and pain levels, regardless of exercise intensity. In addition, nonmuscular failure BFR-RE also increased RPE and pain response, however, to a lower extent compared with either HI-RE or LI-RE.


Asunto(s)
Hemodinámica , Músculo Esquelético/fisiología , Dolor , Esfuerzo Físico , Entrenamiento de Fuerza , Constricción , Estudios Cruzados , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético/irrigación sanguínea , Dimensión del Dolor , Flujo Sanguíneo Regional , Adulto Joven
20.
J Strength Cond Res ; 33(4): 897-901, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30289872

RESUMEN

Damas, F, Barcelos, C, Nóbrega, SR, Ugrinowitsch, C, Lixandrão, ME, Santos, LMEd, Conceição, MS, Vechin, FC, and Libardi, CA. Individual muscle hypertrophy and strength responses to high vs. low resistance training frequencies. J Strength Cond Res 33(4): 897-901, 2019-The aim of this short communication was to compare the individual muscle mass and strength gains with high (HF) vs. low (LF) resistance training (RT) frequencies using data from our previous study. We used a within-subject design in which 20 subjects had one leg randomly assigned to HF (5× per week) and the other to LF (2 or 3× per week). Muscle cross-sectional area and 1 repetition maximum were assessed at baseline and after 8 weeks of RT. HF showed a higher 8-week accumulated total training volume (TTV) (p < 0.0001) compared with LF. Muscle cross-sectional area and 1 repetition maximum values increased significantly and similarly for HF and LF protocols (p > 0.05). This short communication highlights that some individuals showed greater muscle mass and strength gains after HF (31.6 and 26.3% of individuals, respectively), other had greater gains with LF (36.8 and 15.8% of individuals, respectively), and even others showed similar responses between HF and LF, regardless of the consequent higher or lower TTV resulted from HF and LF, respectively. Importantly, individual manipulation of RT frequency can improve the intrasubject responsiveness to training, but the effect is limited to each individual's capacity to respond to RT. Finally, individual response to different frequencies and resulted TTV does not necessarily agree between muscle hypertrophy and strength gains.


Asunto(s)
Fuerza Muscular , Músculo Cuádriceps/anatomía & histología , Músculo Cuádriceps/fisiología , Entrenamiento de Fuerza/instrumentación , Adolescente , Adulto , Humanos , Masculino , Tamaño de los Órganos , Distribución Aleatoria , Entrenamiento de Fuerza/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA