Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; : e2403176, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949041

RESUMEN

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

2.
Adv Sci (Weinh) ; : e2309155, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894561

RESUMEN

A cost-effective chemical prelithiation solution, which consists of Li+, polyaromatic hydrocarbon (PAH), and solvent, is developed for a model hard carbon (HC) electrode. Naphthalene and methyl-substituted naphthalene PAHs, namely 2-methylnaphthalene and 1-methylnaphthalene, are first compared. Grafting an electron-donating methyl group onto the benzene ring can decrease electron affinity and thus reduce the redox potential, which is validated by density functional theory calculations. Ethylene glycol dimethyl ether (G1), diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether solvents are then compared. The G1 solution has the highest conductivity and least steric hindrance, and thus the 1-methylnaphthalene/G1 solution shows superior prelithiation capability. In addition, the effects of the interaction time between Li+ and 1-methylnaphthalene in G1 solvent on the electrochemical properties of a prelithiated HC electrode are investigated. Nuclear magnetic resonance data confirm that 10-h aging is needed to achieve a stable solution coordination state and thus optimal prelithiation efficacy. It is also found that appropriate prelithiation creates a more Li+-conducing and robust solid-electrolyte interphase, improving the rate capability and cycling stability of the HC electrode.

3.
Nat Commun ; 15(1): 413, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195553

RESUMEN

Near infrared energy remains untapped toward the maneuvering of entire solar spectrum harvesting for fulfilling the nuts and bolts of solar hydrogen production. We report the use of Au@Cu7S4 yolk@shell nanocrystals as dual-plasmonic photocatalysts to achieve remarkable hydrogen production under visible and near infrared illumination. Ultrafast spectroscopic data reveal the prevalence of long-lived charge separation states for Au@Cu7S4 under both visible and near infrared excitation. Combined with the advantageous features of yolk@shell nanostructures, Au@Cu7S4 achieves a peak quantum yield of 9.4% at 500 nm and a record-breaking quantum yield of 7.3% at 2200 nm for hydrogen production in the absence of additional co-catalysts. The design of a sustainable visible- and near infrared-responsive photocatalytic system is expected to inspire further widespread applications in solar fuel generation. In this work, the feasibility of exploiting the localized surface plasmon resonance property of self-doped, nonstoichiometric semiconductor nanocrystals for the realization of wide-spectrum-driven photocatalysis is highlighted.

4.
Adv Sci (Weinh) ; 10(32): e2301490, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672878

RESUMEN

Recently, all-solid-state sodium batteries (Na-ASSBs) have received increased interest owing to their high safety and potential of high energy density. The potential of Na-ASSBs based on sodium superionic conductor (NASICON)-structured Na3 V2 (PO4 )3 (Na3 VP) cathodes have been proven by their high capacity and a long cycling stability closely related to the microstructural evolution. However, the detailed kinetics of the electrochemical processes in the cathodes is still unclear. In this work, the sodiation/desodiation process of Na3 VP is first investigated using in situ high-resolution transmission electron microscopy (HRTEM). The intermediate Na2 V2 (PO4 )3 (Na2 VP) phase with the P21 /c space group, which would be inhibited by constant electron beam irradiation, is observed at the atomic scale. With the calculated volume change and the electrode-electrolyte interface after cycling, it can be concluded that the  Na2 VP phase reduces the lattice mismatch between Na3 VP and NaV2 (PO4 )3 (NaVP), preventing structural collapse. Based on the density functional theory calculation (DFT), the Na+ ion migrates more rapidly in the Na2 VP structure, which facilitates the desodiation and sodiation processes. The formation of  Na2 VP phase lowers the formation energy of NaVP. This study demonstrates the dynamic evolution of the Na3 VP structure, paving the way for an in-depth understanding of electrode materials for energy-storage applications.

5.
Small ; 19(40): e2303391, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37267938

RESUMEN

A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.

6.
Small ; 19(44): e2303491, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37381620

RESUMEN

Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.

7.
Int J Surg ; 109(8): 2427-2434, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37161585

RESUMEN

INTRODUCTION: Trigger finger (TF) often occurs after carpal tunnel release (CTR), but the mechanism and outcomes remain inconsistent. This study evaluated the incidence of TF after CTR and its related risk factors. MATERIALS AND METHODS: ​PubMed, Embase, and Scopus databases were searched up to 27 August 2022, with the following keywords: "carpal tunnel release" and "trigger finger". Studies with complete data on the incidence of TF after CTR and published full text. The primary outcome was the association between CTR and the subsequent occurrence of the TF and to calculate the pooled incidence of post-CTR TF. The secondary outcomes included the potential risk factors among patients with and without post-CTR TF as well as the prevalence of the post-CTR TF on the affected digits. RESULTS: Ten studies with total 10,399 participants in 9 studies and 875 operated hands in one article were included for meta-analysis. CTR significantly increases the risk of following TF occurrence (odds ratio=2.67; 95% CI 2.344-3.043; P <0.001). The pooled incidence of TF development after CTR was 7.7%. Women were more likely to develop a TF after CTR surgery (odds ratio=2.02; 95% CI 1.054-3.873; P =0.034). Finally, the thumb was the most susceptible fingers, followed by middle and ring fingers. CONCLUSIONS: High incidence of TF comes after CTR, and women were more susceptible than man. Clinicians were suggested to notice the potential risk of TF after CTR in clinical practice. LEVEL OF EVIDENCE: Level III, meta-analysis.


Asunto(s)
Síndrome del Túnel Carpiano , Trastorno del Dedo en Gatillo , Masculino , Humanos , Femenino , Incidencia , Síndrome del Túnel Carpiano/epidemiología , Síndrome del Túnel Carpiano/cirugía , Factores de Riesgo , Trastorno del Dedo en Gatillo/epidemiología , Trastorno del Dedo en Gatillo/cirugía , Trastorno del Dedo en Gatillo/complicaciones , Pulgar
8.
Sci Rep ; 13(1): 3379, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854966

RESUMEN

The CoCrFeMnNi high entropy alloys remain an active field over a decade owing to its excellent mechanical properties. However, the application of CoCrFeMnNi is limited because of the relatively low tensile strength. Here we proposed a micromechanical model which adopted from the theory of dislocation density to investigate the strengthening mechanisms of precipitation of chromium-rich non-equiatomic CoCrFeMnNi alloy. The microstructures of CoCrFeMnNi were obtained directly from SEM-BSE images with different annealing temperatures. The proposed framework is validated by comparing simulations with experiments of uniaxial tensile tests on the CoCrFeMnNi alloys under different annealing temperatures. The stress-strain curves indicate that the precipitate has greater influence on post-yield hardening than the initial yielding strength. In addition, we identified that the particle distribution, controlled by the average size of the particle and the volume fraction of precipitation, can significantly enhance the strengthening effect. The numerical results indicate that HEAs with a precipitate distribution closer to a normal distribution and with smaller average size will tend to have higher strength and ductility.

9.
Materials (Basel) ; 15(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36234317

RESUMEN

Three corrosion potentials and three corrosion current densities are clearly identified before the passivation for both dynamic polarization curves of equimolar CoCrFeNi high-entropy alloy (HEA) and 304 stainless steel (304SS) in 0.5 M H2SO4 aerated aqueous solution, by decomposing anodic and cathodic polarization curves. The passivated current density of the former is greater than the latter, compliant with not only the constant of solubility product (ksp) and redox equilibrium potential (Eeq) of each metal hydroxide but also the sequence of bond energy (Eb) for monolayer hydroxide on their facets derived from the first principle founded on density function theory. However, the total amount of ion releasing from HEA is less than 304SS, since the hydroxide/oxide film formed in the air of the latter containing greater amounts of Fe(Ⅱ) and Mn(Ⅱ) is less stable around corrosion potentials while they are further oxidized into more stable Fe(Ⅲ) and Mn(ⅢorⅣ) with much lower ksp, leading to the much less increasing ratios of ion releases from 0.25 to 0.6 V.

10.
Sci Rep ; 12(1): 6711, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468910

RESUMEN

Three-dimensional integrated circuit (3D IC) technologies have been receiving much attention recently due to the near-ending of Moore's law of minimization in 2D IC. However, the reliability of 3D IC, which is greatly influenced by voids and failure in interconnects during the fabrication processes, typically requires slow testing and relies on human's judgement. Thus, the growing demand for 3D IC has generated considerable attention on the importance of reliability analysis and failure prediction. This research conducts 3D X-ray tomographic images combining with AI deep learning based on a convolutional neural network (CNN) for non-destructive analysis of solder interconnects. By training the AI machine using a reliable database of collected images, the AI can quickly detect and predict the interconnect operational faults of solder joints with an accuracy of up to 89.9% based on non-destructive 3D X-ray tomographic images. The important features which determine the "Good" or "Failure" condition for a reflowed microbump, such as area loss percentage at the middle cross-section, are also revealed.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Imagenología Tridimensional/métodos , Redes Neurales de la Computación , Reproducibilidad de los Resultados
11.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443940

RESUMEN

High strength and ductility, often mutually exclusive properties of a structural material, are also responsible for damage tolerance. At low temperatures, due to high surface energy, single element metallic nanowires such as Ag usually transform into a more preferred phase via nucleation and propagation of partial dislocation through the nanowire, enabling superplasticity. In high entropy alloy (HEA) CoNiCrFeMn nanowires, the motion of the partial dislocation is hindered by the friction due to difference in the lattice parameter of the constituent atoms which is responsible for the hardening and lowering the ductility. In this study, we have examined the temperature-dependent superplasticity of single component Ag and multicomponent CoNiCrFeMn HEA nanowires using molecular dynamics simulations. The results demonstrate that Ag nanowires exhibit apparent temperature-dependent superplasticity at cryogenic temperature due to (110) to (100) cross-section reorientation behavior. Interestingly, HEA nanowires can perform exceptional strength-ductility trade-offs at cryogenic temperatures. Even at high temperatures, HEA nanowires can still maintain good flow stress and ductility prior to failure. Mechanical properties of HEA nanowires are better than Ag nanowires due to synergistic interactions of deformation twinning, FCC-HCP phase transformation, and the special reorientation of the cross-section. Further examination reveals that simultaneous activation of twining induced plasticity and transformation induced plasticity are responsible for the plasticity at different stages and temperatures. These findings could be very useful for designing nanowires at different temperatures with high stability and superior mechanical properties in the semiconductor industry.

12.
Entropy (Basel) ; 22(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33285849

RESUMEN

A novel lightweight Al-Ti-Cr-Mn-V medium-entropy alloy (MEA) system was developed using a nonequiatiomic approach and alloys were produced through arc melting and drop casting. These alloys comprised a body-centered cubic (BCC) and face-centered cubic (FCC) dual phase with a density of approximately 4.5 g/cm3. However, the fraction of the BCC phase and morphology of the FCC phase can be controlled by incorporating other elements. The results of compression tests indicated that these Al-Ti-Cr-Mn-V alloys exhibited a prominent compression strength (~1940 MPa) and ductility (~30%). Moreover, homogenized samples maintained a high compression strength of 1900 MPa and similar ductility (30%). Due to the high specific compressive strength (0.433 GPa·g/cm3) and excellent combination of strength and ductility, the cast lightweight Al-Ti-Cr-Mn-V MEAs are a promising alloy system for application in transportation and energy industries.

13.
ACS Cent Sci ; 6(6): 984-994, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32607445

RESUMEN

Cu2O rhombic dodecahedra, octahedra, and cubes were densely modified with conjugated 4-ethynylaniline (4-EA) for facet-dependent photocatalytic activity examination. Infrared spectroscopy affirms bonding of the acetylenic group of 4-EA onto the surface copper atoms. The photocatalytically inactive Cu2O cubes showed surprisingly high activity toward methyl orange photodegradation after 4-EA modification, while the already active Cu2O rhombic dodecahedra and octahedra exhibited a photocatalytic activity enhancement. Electron, hole, and radical scavenger experiments prove that the photocatalytic charge transport processes have occurred in the functionalized Cu2O cubes. Electrochemical impedance spectroscopy also indicates reduced charge transfer resistance of the functionalized Cu2O crystals. A band diagram constructed from UV-vis spectral and Mott-Schottky measurements reveals significant band energy shifts in all Cu2O samples after decorating with 4-EA. From density functional theory (DFT) calculations, a new band has emerged slightly above the valence band maximum within the band gap of Cu2O, which has been found to originate from 4-EA through band-decomposed charge density analysis. The increased charge density localized on the 4-EA molecule and the smallest electron transition energy to reach the 4-EA-generated band are factors making {100}-bound Cu2O cubes photocatalytically active. Proper molecular decoration represents a powerful approach to improving the photocatalytic efficiency of semiconductors.

14.
ACS Appl Mater Interfaces ; 11(43): 40909-40915, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31573187

RESUMEN

Electron beam (e-beam) has been developed for nanomaterial observation and moreover to induce structural evolutions in atomic scale. In this work, we demonstrate the deoxidation of cuprous oxide (Cu2O) and the formation of an atomically flat surface on a Cu nanowire by e-beam irradiation. To develop e-beam irradiation applications, the relation between e-beam radiation and the atomic surface is significant. Through the density functional theory simulation of atomic sputtering, an obvious disparity in the sputtering threshold has been found under different structural conditions, which leads to different structural evolutions. Both surface deoxidation and atomic surface flattening reactions have been identified as self-limiting and irreversible processes via in situ transmission electron microscope observation. Under e-beam irradiation, the dynamic mechanism of atomic surface flattening is driven by the convergence of total surface energy and confirmed by climbing-image nudged elastic band (ci-NEB) calculations. With precise control, e-beam irradiation reveals enormous potentials in atomic surface engineering.

15.
Sci Rep ; 9(1): 10940, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358813

RESUMEN

Stacking faults, as defects of disordered crystallographic planes, are one of the most important slipping mechanisms in the commonly seen lattice, face-centered cubic (FCC). Such defects can initiate twinning which strengthens mechanical properties, e.g. twinning-induced plasticity (TWIP), of high entropy alloys (HEAs) at cryogenic temperatures. In this work, by using density functional theory (DFT), the twinning initiated from stacking faults is discussed with regard to two different solute elements, Al and Mo, in the FeNiCoCr HEAs. Our results show that adding aluminum (Al) has noticeable enhancement of twinnability while molybdenum (Mo) only induces more stacking faults in the FeNiCoCr-based HEAs.

16.
ACS Appl Mater Interfaces ; 11(3): 3582-3589, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30592409

RESUMEN

ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity, resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance spectra agree with these experimental observations. Time-resolved photoluminescence profiles provide charge-transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O(110)/ZnS(200) plane interface. A modified Cu2O-ZnS band diagram is presented. Density functional theory calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing that charge transfer across the Cu2O(110)/ZnS(200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.

17.
Chem Commun (Camb) ; 54(71): 9941-9944, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30116815

RESUMEN

We utilized in situ transmission electron microscopy to observe phase transformation in CVD-grown MoS2. Significantly, the reaction was performed under electron irradiation through appropriate control of the electron dose and exposure time. Moreover, we proposed a new route between the 2H and 1T phases that involved the higher energy states TS1/TS2.

18.
Nano Lett ; 18(2): 778-784, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29369633

RESUMEN

The fabrication and placement of high purity nanometals, such as one-dimensional copper (Cu) nanowires, for interconnection in integrated devices have been among the most important technological developments in recent years. Structural stability and oxidation prevention have been the key issues, and the defect control in Cu nanowire growth has been found to be important. Here, we report the synthesis of defect-free single-crystalline Cu nanowires by controlling the surface-assisted heterogeneous nucleation of Cu atomic layering on the graphite-like loop of an amorphous carbon (a-C) lacey film surface. Without a metal-catalyst or induced defects, the high quality Cu nanowires formed with high aspect ratio and high growth rate of 578 nm/s. The dynamic study of the growth of heterogeneous nanowires was conducted in situ with a high-resolution transmission electron microscope. The study illuminates the new mechanism by heterogeneous nucleation control and laying the groundwork for better understanding of heterosurface-assisted nucleation of defect-free Cu nanowire on a-C lacey film.

19.
Gut ; 65(4): 658-71, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26423112

RESUMEN

OBJECTIVE: This study aimed to investigate the therapeutic potential of monoclonal antibody (mAb) against HBV as a novel treatment approach to chronic hepatitis B (CHB) in mouse models. METHODS: Therapeutic effects of mAbs against various epitopes on viral surface protein were evaluated in mice mimicking persistent HBV infection. The immunological mechanisms of mAb-mediated viral clearance were systematically investigated. RESULTS: Among 11 tested mAbs, a novel mAb E6F6 exhibited the most striking therapeutic effects in several HBV-persistent mice. Single-dose administration of E6F6 could profoundly suppress the levels of hepatitis B surface antigen (HBsAg) and HBV DNA for several weeks in HBV-transgenic mice. E6F6 regimen efficiently prevented initial HBV infection, and reduced viral dissemination from infected hepatocytes in human-liver-chimeric mice. E6F6-based immunotherapy facilitated the restoration of anti-HBV T-cell response in hydrodynamic injection (HDI)-based HBV carrier mice. Immunological analyses suggested that the Fcγ receptor-dependent phagocytosis plays a predominant role in E6F6-mediated viral suppression. Molecular analyses suggested that E6F6 recognises an evolutionarily conserved epitope (GPCK(R)TCT) and only forms a smaller antibody-viral particle immune complex with limited interparticle crosslinking when it binds to viral particles. This unique binding characteristic of E6F6 to HBV was possibly associated with its effective in vivo opsonophagocytosis for viral clearance. CONCLUSIONS: These results provided new insight into understanding the therapeutic role and mechanism of antibody against persistent viral infection. The E6F6-like mAbs may provide a novel immunotherapeutic agent against human chronic HBV infection.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos de Superficie de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , Inmunoterapia/métodos , Animales , ADN Viral/efectos de los fármacos , Modelos Animales de Enfermedad , Epítopos , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatocitos/virología , Ratones , Ratones Transgénicos , Fagocitosis , Replicación Viral/efectos de los fármacos
20.
Nat Mater ; 13(11): 1007-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25306422

RESUMEN

In nanotechnology, small-volume metals with large surface area are used as electrodes, catalysts, interconnects and antennae. Their shape stability at room temperature has, however, been questioned. Using in situ high-resolution transmission electron microscopy, we find that Ag nanoparticles can be deformed like a liquid droplet but remain highly crystalline in the interior, with no sign of dislocation activity during deformation. Surface-diffusion-mediated pseudoelastic deformation is evident at room temperature, which can be driven by either an external force or capillary-energy minimization. Atomistic simulations confirm that such highly unusual Coble pseudoelasticity can indeed happen for sub-10-nm Ag particles at room temperature and at timescales from seconds to months.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA