RESUMEN
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable muscle weakness. A subset of five of these CMS-causative genes are associated with protein glycosylation. Glutamine-fructose-6-phosphate transaminase 1 (Gfpt1) is the rate-limiting enzyme within the hexosamine biosynthetic pathway (HBP), a metabolic pathway that produces the precursors for glycosylation. We hypothesized that deficiency in Gfpt1 expression results in aberrant or reduced glycosylation, impairing the proper assembly and stability of key NMJ-associated proteins. Using both in vitro and in vivo Gfpt1-deficient models, we determined that the acetylcholine receptor delta subunit (AChRδ) has reduced expression and is hypo-glycosylated. Using laser capture microdissection, NMJs were harvested from Gfpt1 knockout mouse muscle. A lower-molecular-weight species of AChRδ was identified at the NMJ that was not detected in controls. Furthermore, Gfpt1-deficient muscle lysates showed impairment in protein O-GlcNAcylation and sialylation, suggesting that multiple glycan chains are impacted. Other key NMJ-associated proteins, in addition to AChRδ, may also be differentially glycosylated in Gfpt1-deficient muscle.
Asunto(s)
Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora) , Músculo Esquelético , Unión Neuromuscular , Receptores Nicotínicos , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Animales , Glicosilación , Ratones , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/genética , Ratones NoqueadosRESUMEN
Malformations of the brain are common and vary in severity, from negligible to potentially fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the core protein-folding machinery TRiC/CCT in individuals with brain malformations, intellectual disability, and seizures. The chaperonin TRiC is an obligate hetero-oligomer, and we identify variants in seven of its eight subunits, all of which impair function or assembly through different mechanisms. Transcriptome and proteome analyses of patient-derived fibroblasts demonstrate the various consequences of TRiC impairment. The results reveal an unexpected and potentially widespread role for protein folding in the development of the central nervous system and define a disease spectrum of "TRiCopathies."
Asunto(s)
Encéfalo , Chaperonina con TCP-1 , Pliegue de Proteína , Convulsiones , Humanos , Chaperonina con TCP-1/metabolismo , Chaperonina con TCP-1/genética , Encéfalo/metabolismo , Convulsiones/metabolismo , Convulsiones/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Fibroblastos/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Masculino , Proteoma/metabolismo , Transcriptoma , FemeninoRESUMEN
BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare disease that causes progressive muscle degeneration resulting in life-threatening cardiac complications. The objective of this systematic literature review was to describe and grade the published evidence of predictors of cardiac disease in DMD. METHODS: The review encompassed searches of Embase, MEDLINE ALL, and the Cochrane Database of Systematic Reviews from January 1, 2000, to December 31, 2022, for predictors of cardiac disease in DMD. The certainty of evidence (i.e., very low to high) was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework. RESULTS: We included 33 publications encompassing 9,232 patients with DMD. We found moderate- to high-quality evidence that cardiac medication (i.e., ACE inhibitors [enalapril and perindopril], ß-blockers [carvedilol], and mineralocorticoid receptor antagonists [eplerenone]) are significantly associated with preserved left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and left ventricular circumferential strain (LVCS). DMD mutations in exons 51 and 52 were found to be significantly associated with lower risk of cardiomyopathy; deletions treatable by exon 53 skipping and mutations in the Dp116 coding region with improved LVEF and prolonged cardiac dysfunction-free survival; and exons 45-50 and 52 with early left ventricular systolic dysfunction (low/very low-quality evidence). We found high-quality evidence that glucocorticoids (deflazacort) are significantly associated with preserved LVEF and improved fractional shortening (FS), and low-quality evidence that glucocorticoids (deflazacort, prednisone, and/or prednisolone) are associated with improved ejection fraction (EF) and lower risk of cardiomyopathy, ventricular dysfunction, and heart failure-related mortality. Full-time mechanical ventilation was found to be significantly correlated with LVEF (low-quality evidence), muscle strength with FS (low-quality evidence), and genetic modifiers (i.e., LTBP4 rs10880 and ACTN3) with LVEF, lower risk of cardiomyopathy and left ventricular dilation (low-quality evidence). CONCLUSION: Several sources of cardiac disease heterogeneity are well-studied in patients with DMD. Yet, the certainty of evidence is generally low, and little is known of the contribution of non-pharmacological interventions, as well as the impact of different criteria for initiation of specific treatments. Our findings help raise awareness of prevailing unmet needs, shape expectations of treatment outcomes, and inform the design of future research.
Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Cardiopatías/epidemiología , Cardiopatías/etiología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genéticaRESUMEN
Establishing a molecular diagnosis remains challenging in half of individuals with childhood-onset neuromuscular diseases (NMDs) despite exome sequencing. This study evaluates the diagnostic utility of combining genomic approaches in undiagnosed NMD patients. We performed deep phenotyping of 58 individuals with unsolved childhood-onset NMDs that have previously undergone inconclusive exome studies. Genomic approaches included trio genome sequencing and RNASeq. Genetic diagnoses were reached in 23 out of 58 individuals (40%). Twenty-one individuals carried causal single nucleotide variants (SNVs) or small insertions and deletions, while 2 carried pathogenic structural variants (SVs). Genomic sequencing identified pathogenic variants in coding regions or at the splice site in 17 out of 21 resolved cases, while RNA sequencing was additionally required for the diagnosis of 4 cases. Reasons for previous diagnostic failures included low coverage in exonic regions harboring the second pathogenic variant and involvement of genes that were not yet linked to human diseases at the time of the first NGS analysis. In summary, our systematic genetic analysis, integrating deep phenotyping, trio genome sequencing and RNASeq, proved effective in diagnosing unsolved childhood-onset NMDs. This approach holds promise for similar cohorts, offering potential improvements in diagnostic rates and clinical management of individuals with NMDs.
RESUMEN
Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.
RESUMEN
HNRNPA1 variants are known to cause degenerative motoneuron and muscle diseases which manifests in middle age or later. We report on a girl with early childhood onset, rapidly progressive generalized myopathy including ultrastructural findings in line with a proteinopathy. Proteomics of patient-derived muscle and combined screening of genomic data for copy number variations identified a HNRNPA1 de novo intragenic deletion as causative for the phenotype. Our report expands the spectrum of HNRNPA1-related diseases towards early-childhood onset and adds HNRNPA1 to the growing list of ALS and myopathy genes for which certain mutations may cause severe pediatric phenotypes.
Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1 , Enfermedades Musculares , Humanos , Femenino , Ribonucleoproteína Nuclear Heterogénea A1/genética , Enfermedades Musculares/genética , Progresión de la Enfermedad , Edad de Inicio , Músculo Esquelético/patología , Fenotipo , Mutación , NiñoRESUMEN
Introduction: GNE myopathy is a rare slowly progressive adult-onset distal myopathy with autosomal recessive inheritance. It has distinctive features of quadriceps sparing with preferential anterior tibial involvement. Most patients eventually become wheelchair bound by 10-20 years after onset. This study analyzes the phenotype-genotype characteristics and disease progression in a large cohort of GNEM patients from India. Materials and methods: Retrospective observational study on GNEM from a quaternary neurology referral hospital in southern India. Data was collected from clinical phenotyping, serum creatine kinase levels, muscle biopsy histopathology, genetic analysis and functional assessment scales - IBMFRS and MDFRS. Results: 157 patients were included with mean age at onset and diagnosis: 26.5±6.2 years and 32.8±7.8 years, respectively. M:F ratio was 25â:â13. Most common presenting symptom: foot drop (46.5%) and limb girdle weakness (19.1%). Wasting and weakness of small muscles of hand and finger flexors seen in 66.2% and as an initial symptoms in 5.2%. Though tibialis anterior involvement was most common (89.2%), early quadriceps weakness was noted in 3.2% and Beevor's sign in 59.2%. Rimmed vacuoles were present in 75% of patients with muscle biopsy. Most common variant was the Indian Founder variant identified in 129 patients (c.2179âG>A, p.Val727Met - 82.2%) and most common zygosity being compound heterozygous state (nâ=â115, 87.5%). Biallelic kinase domain variations predisposed to a more severe phenotype. Wheelchair bound state noted in 8.9% with a mean age and duration of 32.0±7.1 and 6.3±4.9 years respectively, earlier than previous studies on other ethnic groups. Conclusion: This is the largest GNEM cohort reported from South Asia. The p.Val727Met variant in compound heterozygous state is noted in majority (82.2%) of the cases. Observed relationships between genotype and clinical parameters shows that severity of the disease might be attributable to specific GNE genotype and thus could aid in predicting the disease progression.
Asunto(s)
Progresión de la Enfermedad , Miopatías Distales , Estudios de Asociación Genética , Humanos , Masculino , Adulto , Femenino , India , Miopatías Distales/genética , Miopatías Distales/fisiopatología , Miopatías Distales/patología , Estudios Retrospectivos , Adulto Joven , Complejos Multienzimáticos/genética , Fenotipo , Músculo Esquelético/patología , Mutación , Estudios de Cohortes , GenotipoRESUMEN
Background: Congenital myasthenic syndromes (CMS) are a group of rare but often treatable inherited disorders of neuromuscular transmission characterized by fatigable skeletal muscle weakness. In this paper we present the largest phenotypic analysis to date of a cohort of patients carrying the pathogenic variant c.1327delG in the CHRNE gene, leading to CHRNE-CMS. Objective: This study aims to identify the phenotypic variability in CMS associated with c.1327delG mutation in the CHRNE gene. Methods: Disease specific symptoms were assessed using specific standardized tests for autoimmune myasthenia (Quantitative Myasthenia Gravis score) as well as patient-reported scales for symptom severity. Evaluated clinical manifestations included ocular symptoms (ophthalmoparesis and ptosis), bulbar weakness, axial muscle weakness, proximal and distal muscle weakness, and respiratory function. Patients were allocated into three groups according to clinical impression of disease severity: mild, moderate, and severe. Results: We studied 91 Bulgarian Roma patients, carrying the same causative homozygous CHRNE c.1327delG mutation. Bulbar weakness was present in patients throughout all levels of severity of CHRNE-CMS in this study. However, difficulties in eating and swallowing are more prominent characteristics in the moderate and severe clinical phenotypes. Diplopia and ptosis resulting from fatigue of the extraocular muscles were permanent features regardless of disease severity or age. Levels of axial, proximal and distal muscle weakness were variable between disease groups. The statistical analysis showed significant differences between the patients in the three groups, emphasizing a possible variation in symptom manifestation in the evaluated patient population despite the disease originating from the same genetic mutation. Impairment of respiratory function was more prominent in severely affected patients, which might result from loss of compensatory muscle function in those individuals. Conclusion: Results from our study indicate significant phenotypic heterogeneity leading to mild, moderate, or severe clinical manifestation in CHRNE-CMS, despite the genotypic homogeneity.
Asunto(s)
Mutación del Sistema de Lectura , Síndromes Miasténicos Congénitos , Fenotipo , Receptores Nicotínicos , Humanos , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Masculino , Femenino , Adulto , Adolescente , Adulto Joven , Niño , Receptores Nicotínicos/genética , Persona de Mediana Edad , Preescolar , Índice de Severidad de la Enfermedad , Bulgaria , Debilidad Muscular/genética , Debilidad Muscular/fisiopatologíaRESUMEN
Idiopathic inflammatory myopathies (IIMs) are rare disorders characterized by inflammation of skeletal muscle, which can result in fatty replacement of muscle, muscle atrophy, and subsequent weakness. Therapeutic advancements have improved clinical outcomes but impose an economic impact on healthcare systems. We aimed to summarize the direct and indirect costs associated with IIMs in a systematic review (PROSPERO Registration #CRD42023443143). Electronic databases (MEDLINE, Embase, CINAHL, and Scopus) were systematically searched for full-length articles (excluding case reports) reporting costs specific to patients diagnosed with an IIM, published between database inception and April 19, 2023. Direct cost categories included inpatient, outpatient, medication, home/long-term care, and durable medical equipment such as mobility and respiratory aids. Indirect costs included lost productivity. Eligibility criteria were met by 21 of the 3,193 unique titles identified. Costs are expressed in 2023 United States of America dollars, with adjustments for differences in purchasing power applied to currency conversions. As no study reported on all cost categories, annualized cost of IIM per patient was estimated by calculating the mean cost per category, and then adding the means of the different cost categories. By this method, IIM was estimated to cost $52,210 per patient per year. Proportional contributions by category were lost productivity (0.278), outpatient care (0.214), medications (0.171), inpatient care (0.161), home/long-term care (0.122), and durable medical equipment (0.053). Newer findings with intravenous immunoglobulin considered first line therapy for IIM demonstrated markedly higher annual medication costs per patient, upwards of $33,900 compared to an average of $3,908 ± $1,042 in older studies. Future cost-effectiveness studies require updated cost-of-illness studies reflecting the evolving sub-classification and treatment options for IIM, and should consider the impact of IIM on patients and their families.
Asunto(s)
Costos de la Atención en Salud , Miositis , Humanos , Miositis/economía , Miositis/terapia , Adulto , Costo de EnfermedadRESUMEN
BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of inherited neuromuscular junction (NMJ) disorders arising from gene variants encoding diverse NMJ proteins. Recently, the VAMP1 gene, responsible for encoding the vesicle-associated membrane protein 1 (VAMP1), has been associated with CMS. METHODS: This study presents a characterization of five new individuals with VAMP1-related CMS, providing insights into the phenotype. RESULTS: The individuals with VAMP1-related CMS exhibited early disease onset, presenting symptoms prenatally or during the neonatal period, alongside severe respiratory involvement and feeding difficulties. Generalized weakness at birth was a common feature, and none of the individuals achieved independent walking ability. Notably, all cases exhibited scoliosis. The clinical course remained stable, without typical exacerbations seen in other CMS types. The response to anticholinesterase inhibitors and salbutamol was only partial, but the addition of 3,4-diaminopyridine (3,4-DAP) led to significant and substantial improvements, suggesting therapeutic benefits of 3,4-DAP for managing VAMP1-related CMS symptoms. Noteworthy is the identification of the VAMP1 (NM_014231.5): c.340delA; p.Ile114SerfsTer72 as a founder variant in the Iberian Peninsula and Latin America. CONCLUSIONS: This study contributes valuable insights into VAMP1-related CMS, emphasizing their early onset, arthrogryposis, facial and generalized weakness, respiratory involvement, and feeding difficulties. Furthermore, the potential efficacy of 3,4-DAP as a useful therapeutic option warrants further exploration. The findings have implications for clinical management and genetic counseling in affected individuals. Additional research is necessary to elucidate the long-term outcomes of VAMP1-related CMS.
Asunto(s)
Amifampridina , Síndromes Miasténicos Congénitos , Fenotipo , Proteína 1 de Membrana Asociada a Vesículas , Humanos , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Femenino , Masculino , Amifampridina/farmacología , Proteína 1 de Membrana Asociada a Vesículas/genética , Niño , Adolescente , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacología , 4-Aminopiridina/uso terapéutico , Preescolar , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico , LactanteRESUMEN
Neuromuscular diseases (NMDs), in their phenotypic heterogeneity, share quite invariably common issues that involve several clinical and socio-economical aspects, needing a deep critical analysis to develop better management strategies. From diagnosis to treatment and follow-up, the development of technological solutions can improve the detection of several critical aspects related to the diseases, addressing both the met and unmet needs of clinicians and patients. Among several aspects of the digital transformation of health and care, this congress expands what has been learned from previous congresses editions on applicability and usefulness of technological solutions in NMDs. In particular the focus on new solutions for remote monitoring provide valuable insights to increase disease-specific knowledge and trigger prompt decision-making. In doing that, several perspectives from different areas of expertise were shared and discussed, pointing out strengths and weaknesses on the current state of the art on topic, suggesting new research lines to advance technology in this specific clinical field.
RESUMEN
Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.
RESUMEN
Background: The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed. Objective: We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders. Methods: The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP. Results: Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (nâ=â1, MT-TN), nuclear encoded mitochondrial genes (nâ=â2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (nâ=â5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data. Conclusions: In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.
Asunto(s)
Secuenciación del Exoma , Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico , Secuenciación del Exoma/métodos , Niño , Masculino , Femenino , Estudios de Cohortes , ADN Mitocondrial/genéticaRESUMEN
Recessive desminopathies are rare and often present as severe early-onset myopathy. Here we report a milder phenotype in three unrelated patients from southern India (2 M, 1F) aged 16, 21, and 22 years, who presented with childhood-onset, gradually progressive, fatigable limb-girdle weakness, ptosis, speech and swallowing difficulties, without cardiac involvement. Serum creatine kinase was elevated, and repetitive nerve stimulation showed decrement in all. Clinical improvement was noted with pyridostigmine and salbutamol in two patients. All three patients had a homozygous substitution in intron 5: DES(NM_001927.4):c.1023+5G>A, predicted to cause a donor splice site defect. Muscle biopsy with ultrastructural analysis suggested myopathy with myofibrillar disarray, and immunohistochemistry showed partial loss of desmin with some residual staining, while western blot analysis showed reduced desmin. RT-PCR of patient muscle RNA revealed two transcripts: a reduced normal desmin transcript and a larger abnormal transcript suggesting leaky splicing at the intron 5 donor site. Sequencing of the PCR products confirmed the inclusion of intron 5 in the longer transcript, predicted to cause a premature stop codon. Thus, we provide evidence for a leaky splice site causing partial loss of desmin associated with a unique phenotypic presentation of a milder form of desmin-related recessive myopathy overlapping with congenital myasthenic syndrome.
Asunto(s)
Desmina , Humanos , Masculino , Desmina/genética , Desmina/metabolismo , Femenino , Adulto Joven , Adolescente , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Sitios de Empalme de ARN/genética , Transmisión Sináptica , Fenotipo , MutaciónRESUMEN
Background: NEFL encodes for the neurofilament light chain protein. Pathogenic variants in NEFL cause demyelinating, axonal and intermediate forms of Charcot-Marie-Tooth disease (CMT) which present with a varying degree of severity and somatic mutations have not been described yet. Currently, 34 different CMT-causing pathogenic variants in NEFL in 174 patients have been reported. Muscular involvement was also described in CMT2E patients mostly as a secondary effect. Also, there are a few descriptions of a primary muscle vulnerability upon pathogenic NEFL variants. Objectives: To expand the current knowledge on the genetic landscape, clinical presentation and muscle involvement in NEFL-related neurological diseases by retrospective case study and literature review. Methods: We applied in-depth phenotyping of new and already reported cases, molecular genetic testing, light-, electron- and Coherent Anti-Stokes Raman Scattering-microscopic studies and proteomic profiling in addition to in silico modelling of NEFL-variants. Results: We report on a boy with a muscular phenotype (weakness, myalgia and cramps, Z-band alterations and mini-cores in some myofibers) associated with the heterozygous p.(Phe104Val) NEFL-variant, which was previously described in a neuropathy case. Skeletal muscle proteomics findings indicated affection of cytoskeletal proteins. Moreover, we report on two further neuropathic patients (16 years old girl and her father) both carrying the heterozygous p.(Pro8Ser) variant, which has been identified as 15% somatic mosaic in the father. While the daughter presented with altered neurophysiology,neurogenic clump feet and gait disturbances, the father showed clinically only feet deformities. As missense variants affecting proline at amino acid position 8 are leading to neuropathic manifestations of different severities, in silico modelling of these different amino acid substitutions indicated variable pathogenic impact correlating with disease onset. Conclusions: Our findings provide new morphological and biochemical insights into the vulnerability of denervated muscle (upon NEFL-associated neuropathy) as well as novel genetic findings expanding the current knowledge on NEFL-related neuromuscular phenotypes and their clinical manifestations. Along this line, our data show that even subtle expression of somatic NEFL variants can lead to neuromuscular symptoms.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Neurofilamentos , Fenotipo , Humanos , Masculino , Proteínas de Neurofilamentos/genética , Enfermedad de Charcot-Marie-Tooth/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Estudios Retrospectivos , Niño , Adolescente , Femenino , MutaciónRESUMEN
BACKGROUND: Facioscapulohumeral muscular dystrophy is a hereditary progressive myopathy caused by aberrant expression of the transcription factor DUX4 in skeletal muscle. No approved disease-modifying treatments are available for this disorder. We aimed to assess the safety and efficacy of losmapimod (a small molecule that inhibits p38α MAPK, a regulator of DUX4 expression, and p38ß MAPK) for the treatment of facioscapulohumeral muscular dystrophy. METHODS: We did a randomised, double-blind, placebo-controlled phase 2b trial at 17 neurology centres in Canada, France, Spain, and the USA. We included adults aged 18-65 years with type 1 facioscapulohumeral muscular dystrophy (ie, with loss of repression of DUX4 expression, as ascertained by genotyping), a Ricci clinical severity score of 2-4, and at least one skeletal muscle judged using MRI to be suitable for biopsy. Participants were randomly allocated (1:1) to either oral losmapimod (15 mg twice a day) or matching placebo for 48 weeks, via an interactive response technology system. The investigator, study staff, participants, sponsor, primary outcome assessors, and study monitor were masked to the treatment allocation until study closure. The primary endpoint was change from baseline to either week 16 or 36 in DUX4-driven gene expression in skeletal muscle biopsy samples, as measured by quantitative RT-PCR. The primary efficacy analysis was done in all participants who were randomly assigned and who had available data for assessment, according to the modified intention-to-treat principle. Safety and tolerability were assessed as secondary endpoints. This study is registered at ClinicalTrials.gov, number NCT04003974. The phase 2b trial is complete; an open-label extension is ongoing. FINDINGS: Between Aug 27, 2019, and Feb 27, 2020, 80 people were enrolled. 40 were randomly allocated to losmapimod and 40 to placebo. 54 (68%) participants were male and 26 (33%) were female, 70 (88%) were White, and mean age was 45·7 (SD 12·5) years. Least squares mean changes from baseline in DUX4-driven gene expression did not differ significantly between the losmapimod (0·83 [SE 0·61]) and placebo (0·40 [0·65]) groups (difference 0·43 [SE 0·56; 95% CI -1·04 to 1·89]; p=0·56). Losmapimod was well tolerated. 29 treatment-emergent adverse events (nine drug-related) were reported in the losmapimod group compared with 23 (two drug-related) in the placebo group. Two participants in the losmapimod group had serious adverse events that were deemed unrelated to losmapimod by the investigators (alcohol poisoning and suicide attempt; postoperative wound infection) compared with none in the placebo group. No treatment discontinuations due to adverse events occurred and no participants died during the study. INTERPRETATION: Although losmapimod did not significantly change DUX4-driven gene expression, it was associated with potential improvements in prespecified structural outcomes (muscle fat infiltration), functional outcomes (reachable workspace, a measure of shoulder girdle function), and patient-reported global impression of change compared with placebo. These findings have informed the design and choice of efficacy endpoints for a phase 3 study of losmapimod in adults with facioscapulohumeral muscular dystrophy. FUNDING: Fulcrum Therapeutics.
Asunto(s)
Distrofia Muscular Facioescapulohumeral , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ciclopropanos/efectos adversos , Ciclopropanos/uso terapéutico , Método Doble Ciego , Piridinas/efectos adversos , Piridinas/uso terapéutico , Resultado del TratamientoRESUMEN
Importance: There is increasing evidence that early diagnosis and treatment are key for outcomes in infants with spinal muscular atrophy (SMA), and newborn screening programs have been implemented to detect the disease before onset of symptoms. However, data from controlled studies that reliably confirm the benefits of newborn screening are lacking. Objective: To compare data obtained on patients with SMA diagnosed through newborn screening and those diagnosed after clinical symptom onset. Design, Setting, and Participants: This nonrandomized controlled trial used data from the SMARTCARE registry to evaluate all children born between January 2018 and September 2021 with genetically confirmed SMA and up to 3 SMN2 copies. The registry includes data from 70 participating centers in Germany, Austria, and Switzerland. Data analysis was performed in February 2023 so that all patients had a minimal follow-up of 18 months. Exposure: Patients born in 2 federal states in Germany underwent screening in a newborn screening pilot project. All other patients were diagnosed after clinical symptom onset. All patients received standard care within the same health care system. Main Outcomes: The primary end point was the achievement of motor milestones. Results: A total of 234 children (123 [52.6%] female) were identified who met inclusion criteria and were included in the analysis: 44 (18.8%) in the newborn screening cohort and 190 children (81.2%) in the clinical symptom onset cohort. The mean (SD) age at start of treatment with 1 of the approved disease-modifying drugs was 1.3 (2.2) months in the newborn screening cohort and 10.7 (9.1) months in the clinical symptom onset cohort. In the newborn screening cohort, 40 of 44 children (90.9%) gained the ability to sit independently vs 141 of 190 (74.2%) in the clinical symptom onset cohort. For independent ambulation, the ratio was 28 of 40 (63.6%) vs 28 of 190 (14.7%). Conclusions and Relevance: This nonrandomized controlled trial demonstrated effectiveness of newborn screening for infants with SMA in the real-world setting. Functional outcomes and thus the response to treatment were significantly better in the newborn screening cohort compared to the unscreened clinical symptom onset group. Trial Registration: German Clinical Trials Register: DRKS00012699.
Asunto(s)
Tamizaje Neonatal , Humanos , Tamizaje Neonatal/métodos , Recién Nacido , Femenino , Masculino , Lactante , Alemania , Sistema de Registros , Atrofia Muscular Espinal/diagnóstico , Proyectos Piloto , Diagnóstico PrecozRESUMEN
Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.
Asunto(s)
Mosaicismo , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Estudios de Asociación Genética , Miotonía Congénita/genética , Miotonía Congénita/diagnóstico , Canal Liberador de Calcio Receptor de Rianodina/genética , Masculino , PreescolarRESUMEN
BACKGROUND: Peripheral neuropathies in mitochondrial disease are caused by mutations in nuclear genes encoding mitochondrial proteins, or in the mitochondrial genome. Whole exome or genome sequencing enable parallel testing of nuclear and mtDNA genes, and it has significantly advanced the genetic diagnosis of inherited diseases. Despite this, approximately 40% of all Charcot-Marie-Tooth (CMT) cases remain undiagnosed. METHODS: The genome-phenome analysis platform (GPAP) in RD-Connect was utilised to create a cohort of 2087 patients with at least one Human Phenotype Ontology (HPO) term suggestive of a peripheral neuropathy, from a total of 10,935 patients. These patients' genetic data were then analysed and searched for variants in known mitochondrial disease genes. RESULTS: A total of 1,379 rare variants were identified, 44 of which were included in this study as either reported pathogenic or likely causative in 42 patients from 36 families. The most common genes found to be likely causative for an autosomal dominant neuropathy were GDAP1 and GARS1. We also detected heterozygous likely pathogenic variants in DNA2, MFN2, DNM2, PDHA1, SDHA, and UCHL1. Biallelic variants in SACS, SPG7, GDAP1, C12orf65, UCHL1, NDUFS6, ETFDH and DARS2 and variants in the mitochondrial DNA (mtDNA)-encoded MT-ATP6 and MT-TK were also causative for mitochondrial CMT. Only 50% of these variants were already reported as solved in GPAP. CONCLUSION: Variants in mitochondrial disease genes are frequent in patients with inherited peripheral neuropathies. Due to the clinical overlap between mitochondrial disease and CMT, agnostic exome or genome sequencing have better diagnostic yields than targeted gene panels.
Asunto(s)
Enfermedades Mitocondriales , Enfermedades del Sistema Nervioso Periférico , Humanos , Masculino , Femenino , Enfermedades del Sistema Nervioso Periférico/genética , Adulto , Enfermedades Mitocondriales/genética , Persona de Mediana Edad , Anciano , Adulto Joven , Mutación , Proteínas Mitocondriales/genética , Estudios de Cohortes , Adolescente , Enfermedad de Charcot-Marie-Tooth/genéticaRESUMEN
Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.